- 总时间限制:
- 2000ms 内存限制:
- 65536kB
- 描述
- 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。 - 输入
- 输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
- 输出
- 最长上升子序列的长度。
- 样例输入
-
7 1 7 3 5 9 4 8
- 样例输出
-
4
- 来源
- 翻译自 Northeastern Europe 2002, Far-Eastern Subregion 的比赛试题
import java.util.ArrayList; import java.util.Arrays; import java.util.Scanner; public class Main{ public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt();//序列长度 1-1000 int[] l = new int[n],a = new int[n]; //以某一节点为重点的最长子序列的长度 for(int i =0;i<n;i++) { a[i] = in.nextInt();//输入第i个数,下面计算它为终点的最长上升子序列 if(i==0) l[i] = 1; else { int k = 0,longest = 0; for(int j=0;j<i;j++) { if(a[j]<a[i])//比该数小的数组前面的数里 { if(k == 0) longest = l[j];//第一个比他小 else { if(l[j] > longest)//找到最长的 longest = l[j]; } k++; }//if l[i] = longest+1; }//for }//else } Arrays.sort(l); System.out.println(l[l.length-1]); } }
Summary:
This poj problem is another typical example for dynamic planning.Well, the idea is very delicate. I tried to calculate the longgest sbsequences before a certain number, but it couldn' make it out.
Then I referred to the book, which is shameful to admit, I found an only too brilliant idea which is to caculate the longgest rising subsequences's lengths of one ended with a certain number.
As always, I got WA first time the first time I submitted my answer. Oh no..
The reason for the failure lies in this sentance when initializing the value:
I wrote "longest=1"..which triggers to a fault when the number happens to find no one before it can be less than itself:
longest = 0