zoukankan      html  css  js  c++  java
  • 《机器学习》第一周 Introduction | 监督学习与非监督学习的基本概念

    课程视频地址:https://www.coursera.org/learn/machine-learning/lecture/1VkCb/supervised-learning


    Supervised Learning 监督学习

    监督学习:给出一个算法,需要部分数据集已经有正确答案。比如给出给定房价数据集,对于里面每个数据,算法都能计算出对应的正确房价。算法的结果就是短处更多的正确价格。

    像房价预测问题这样的监督学习又叫回归学习(一般是监督学习的一种)。

    Supervised Learning:“right and answers given”

    监督学习:给出训练集

    Regression Learning:Predict continuous valued output(eg:price)

    回归学习:预测输出是连续值,比如说价格。

    Classification: Discrete value output ( 0 or 1 )

    分类问题: 离散值输出,有时可以不止两个特征,甚至无穷个特征。

    课堂训练(如图):

    答案是C。

    Unsupervised Learning 无监督学习

      在无监督学习中,我们用到的数据和监督学习中的不一样。在无监督学习中,没有属性或者说标签的概念,只有一个数据集。

      对于给定的数据集,无监督学习算法通过数据中存在的内在结构可能判定,该数据集包含几个不同的聚类,然后把数据分到这几个聚类中。这就是聚类算法(clustering algorithm)。聚类算法的实际用例有谷歌新闻每天搜索成千上万条新闻,然后把同一个事件的新闻报道聚集在一起。

      历史上,由于聚类问题和无监督学习关联更紧密,所以时常将两者概念混在一起。但事实上,无监督学习还有另一种算法——关联规则挖掘。实例如鸡尾酒宴问题。关联规则挖掘也是无监督学习。

  • 相关阅读:
    数据收集
    数据展现
    一场媲美“超女”海选的招聘狂潮
    时机论:早起的鸟儿也要选对“用户”季节
    程序设计实践(评注版) 评注者序
    “三低”用户养活的互联网
    芯故事 心感动:英特尔企业文化的力量
    初始化游戏状态数据
    初始化游戏状态数据二
    几个常用的JavaScript字符串处理函数 – split()、join()、substring()和indexOf()
  • 原文地址:https://www.cnblogs.com/danscarlett/p/5942577.html
Copyright © 2011-2022 走看看