我们知道 1-d 波动方程的解的形式为:$ egin{aligned} u(x, t) &= sum_{n=1}^{infty}sin(frac{npi x}{L})(A_ncos(frac{npi ct}{L}) + B_nsin(frac{npi ct}{L})) \ &= sum_{n=1}^{infty} C_nsin(frac{npi x}{L})sin(frac{npi ct}{L} + heta) \ &= sum_{n=1}^{infty} frac{C_n}{2}left [ cos left [ frac{npi}{L}(x - ct) - heta ight ] - cos left [ frac{npi}{L}(x + ct) + heta ight ] ight ]end{aligned} $
如图:

这里仅仅展示 $ n = 3 $ 随时间波动动画,即(加了一点东西):
clear;clc;
pi = 3.1415926;
L = 5.;
n = 3;
T0 = 0.5;
pho = 1.;
c = sqrt(T0/pho);
% u = zeros(100, length(x));
% for i=1:100
% u(i,:) = sqrt(2)*sin(n*pi*x/L)*sin((n*pi*c*(i-1))/L + pi/4.);
% end
%
% t = ones(100, length(x));
% for i=1:100
% t(i,:) = t(i,:)*(i/10.);
% end
%
% f1 = figure;
% plot3(t,x,u);
figure;
loops = 100;
im = imread('background1.jpg');
cmap = flipud(im);
set(gcf, 'Position', get(0,'Screensize'));
filename = 'f:/1d_wave_yuyuko.gif';
for i = 0:loops
hold off
[x,t] = meshgrid(0:.1:5,i:.03:10+i);
z = sqrt(2)*sin(n*pi*x/L).*sin((n*pi*c*t)/L + pi/4.);
mesh(t,x,z,cmap,'facecolor','texturemap','edgecolor','none','cdatamapping','direct')
view(50 - i,60)
title('PDE: $$frac{partial^2 u}{partial t^2} = c^2frac{partial^2 u}{partial x^2}, n = 3$$','Interpreter','latex')
axis tight manual
ax = gca;
ax.NextPlot = 'replaceChildren';
axis off
drawnow
% 保存为 gif
frame = getframe(gcf);
im = frame2im(frame);
[imind,cm] = rgb2ind(im,256);
if i == 0
imwrite(imind,cm,filename,'gif', 'Loopcount',inf);
else
imwrite(imind,cm,filename,'gif','WriteMode','append');
end
end
效果:
