zoukankan      html  css  js  c++  java
  • 爬虫大作业

    import jieba.analyse
    from PIL import Image,ImageSequence
    import numpy as np
    import matplotlib.pyplot as plt
    from wordcloud import WordCloud,ImageColorGenerator
    import requests
    from urllib import parse
    from bs4 import BeautifulSoup
    
    def getWord():
        lyric = ''
        # 打开文档,进行编译,防止错误
        f = open('youku.txt', 'r', encoding='utf-8')
        # 将文档里面的数据进行单个读取,便于生成词云
        for i in f:
            lyric += f.read()
        #     进行分析
        result = jieba.analyse.textrank(lyric, topK=50, withWeight=True)
        keywords = dict()
        for i in result:
            keywords[i[0]] = i[1]
        print(keywords)
    
        # 获取词云生成所需要的模板图片
        image = Image.open('789.jpg')
        graph = np.array(image)
        # 进行词云的设置
        wc = WordCloud(font_path='./fonts/simhei.ttf', background_color='White', max_words=50, mask=graph)
        wc.generate_from_frequencies(keywords)
        image_color = ImageColorGenerator(graph)
        plt.imshow(wc)
        plt.imshow(wc.recolor(color_func=image_color))
        plt.axis("off")
        plt.show()
        wc.to_file('dream.png')
    
    name = 'youku'
    unique = parse.quote(name)
    print(unique)
    url = 'http://list.youku.com/category/show/c_96_g_%E7%A7%91%E5%B9%BB_s_1_d_1.html?spm=a2hmv.20009921.m_86982.5~5~5!3~1~3!5~A'
    print(url)
    
    res = requests.get(url)
    res.encoding = 'utf-8'
    soup = BeautifulSoup(res.text, 'html.parser')
    titles = soup.select(".info-list .title a")
    for i in range(0,len(titles)):
        title = titles[i].text
        f = open('youku.txt', 'a', encoding='utf-8')
        f.write(title)
        f.write("
    ")
        f.close()
        # print(title)
    getWord()

  • 相关阅读:
    JAVA周二学习总结
    2019春总结作业
    第十二周作业
    第十一周作业
    第十周作业
    第九周作业
    第八周作业
    第七周作业
    第六周作业
    第四周课程总结&试验报告(二)
  • 原文地址:https://www.cnblogs.com/darkhate/p/8922674.html
Copyright © 2011-2022 走看看