zoukankan      html  css  js  c++  java
  • (转)几种平均数的关系:

    参考网址:

    http://baike.baidu.com/view/441784.htm

    调和平均数:

    ${{H}_{n}}=frac{n}{sumlimits_{i=1}^{n}{frac{1}{{{x}_{i}}}}}=frac{n}{frac{1}{{{x}_{1}}}+frac{1}{{{x}_{2}}}+cdots +frac{1}{{{x}_{n}}}}$

    几何平均数:

    ${{G}_{n}}=sqrt[n]{prodlimits_{i=1}^{n}{{{x}_{i}}}}=sqrt[n]{{{x}_{1}}{{x}_{2}}cdots {{x}_{n}}}$

    算数平均数:

    ${{A}_{n}}=frac{sumlimits_{i=1}^{n}{{{x}_{i}}}}{n}=frac{{{x}_{1}}+{{x}_{2}}+cdots +{{x}_{n}}}{n}$

    平方平均数:

    ${{Q}_{n}}=sqrt{frac{sumlimits_{i=1}^{n}{x_{i}^{2}}}{n}}=sqrt{frac{x_{1}^{2}+x_{2}^{2}+cdots +x_{n}^{2}}{n}}$

    关系为:

    ${{H}_{n}}le {{G}_{n}}le {{A}_{n}}le {{Q}_{n}}$

    简记为“调几算方”

    当为两个数时:

    $frac{2}{frac{1}{a}+frac{1}{b}}le sqrt{ab}le frac{a+b}{2}le sqrt{frac{{{a}^{2}}+{{b}^{2}}}{2}}$

  • 相关阅读:
    Many Equal Substrings CF
    Seek the Name, Seek the Fame POJ
    人人都是好朋友(离散化 + 并查集)
    建设道路
    day_30
    day_29作业
    day_29
    day_28
    day_27
    day_26作业
  • 原文地址:https://www.cnblogs.com/darkknightzh/p/4414128.html
Copyright © 2011-2022 走看看