zoukankan      html  css  js  c++  java
  • 《算法笔记》7. 二叉树基本算法整理

    1 二叉树基本算法

    转载注明出处,源码地址: https://github.com/Dairongpeng/algorithm-note ,欢迎star

    1.1 二叉树的遍历

    1.1.1 二叉树节点定义

        Class Node{
            // 节点的值类型
            V value;
            // 二叉树的左孩子指针
            Node left;
            // 二叉树的右孩子指针
            Node right;
        }
    

    1.1.2 递归实现先序中序后序遍历

    先序:任何子树的处理顺序都是,先头结点,再左子树,再右子树。先处理头结点

    中序:任何子树的处理顺序都是,先左子树,再头结点,再右子树。中间处理头结点

    后序:任何子树的处理顺序都是,先左子树,再右子树,再头结点。最后处理头结点

    对于下面的一棵树:

    graph TD
    1-->2
    1-->3
    2-->4
    2-->5
    3-->6
    3-->7
    

    1、 先序遍历为:1 2 4 5 3 6 7

    2、 中序遍历为:4 2 5 1 6 3 7

    3、 后序遍历为:4 5 2 6 7 3 1

    package class07;
    
    public class Code01_RecursiveTraversalBT {
    
    	public static class Node {
    		public int value;
    		public Node left;
    		public Node right;
    
    		public Node(int v) {
    			value = v;
    		}
    	}
    
    	public static void f(Node head) {
    		if (head == null) {
    			return;
    		}
    		// 1 此处打印等于先序
    		f(head.left);
    		// 2 此处打印等于中序
    		f(head.right);
    		// 3 此处打印等于后序
    	}
    
    	// 先序打印所有节点
    	public static void pre(Node head) {
    		if (head == null) {
    			return;
    		}
    		// 打印头
    		System.out.println(head.value);
    		// 递归打印左子树
    		pre(head.left);
    		// 递归打印右子树
    		pre(head.right);
    	}
    
            // 中序遍历
    	public static void in(Node head) {
    		if (head == null) {
    			return;
    		}
    		in(head.left);
    		System.out.println(head.value);
    		in(head.right);
    	}
    
            // 后序遍历
    	public static void pos(Node head) {
    		if (head == null) {
    			return;
    		}
    		pos(head.left);
    		pos(head.right);
    		System.out.println(head.value);
    	}
    
    	public static void main(String[] args) {
    		Node head = new Node(1);
    		head.left = new Node(2);
    		head.right = new Node(3);
    		head.left.left = new Node(4);
    		head.left.right = new Node(5);
    		head.right.left = new Node(6);
    		head.right.right = new Node(7);
    
    		pre(head);
    		System.out.println("========");
    		in(head);
    		System.out.println("========");
    		pos(head);
    		System.out.println("========");
    
    	}
    
    }
    

    结论:对于树的递归,每个节点实质上会到达三次,例如上文的树结构,对于f函数,我们传入头结点,再调用左树再调用右树。实质上经过的路径为1 2 4 4 4 2 5 5 5 2 1 3 6 6 6 3 7 7 7 3 1。我们在每个节点三次返回的基础上,第一次到达该节点就打印,就是先序,第二次到达该节点打印就是中序,第三次到达该节点就是后序。

    所以先序中序后序,只是我们的递归顺序加工出来的结果!

    1.1.3 非递归实现先序中序后序遍历

    思路:由于任何递归可以改为非递归,我们可以使用压栈来实现。用先序实现的步骤,其他类似:

    步骤一,把节点压入栈中,弹出就打印

    步骤二,如果有右孩子先压入右孩子

    步骤三,如果有左孩子压入左孩子

    package class07;
    
    import java.util.Stack;
    
    public class Code02_UnRecursiveTraversalBT {
    
    	public static class Node {
    		public int value;
    		public Node left;
    		public Node right;
    
    		public Node(int v) {
    			value = v;
    		}
    	}
    
            // 非递归先序
    	public static void pre(Node head) {
    		System.out.print("pre-order: ");
    		if (head != null) {
    			Stack<Node> stack = new Stack<Node>();
    			stack.add(head);
    			while (!stack.isEmpty()) {
    			        // 弹出就打印
    				head = stack.pop();
    				System.out.print(head.value + " ");
    				// 右孩子不为空,压右
    				if (head.right != null) {
    					stack.push(head.right);
    				}
    				// 左孩子不为空,压左
    				if (head.left != null) {
    					stack.push(head.left);
    				}
    			}
    		}
    		System.out.println();
    	}
    
            // 非递归中序
    	public static void in(Node head) {
    		System.out.print("in-order: ");
    		if (head != null) {
    			Stack<Node> stack = new Stack<Node>();
    			while (!stack.isEmpty() || head != null) {
    			        // 整条左边界依次入栈
    				if (head != null) {
    					stack.push(head);
    					head = head.left;
    				// 左边界到头弹出一个打印,来到该节点右节点,再把该节点的左树以此进栈
    				} else {
    					head = stack.pop();
    					System.out.print(head.value + " ");
    					head = head.right;
    				}
    			}
    		}
    		System.out.println();
    	}
    
            // 非递归后序
    	public static void pos1(Node head) {
    		System.out.print("pos-order: ");
    		if (head != null) {
    			Stack<Node> s1 = new Stack<Node>();
    			// 辅助栈
    			Stack<Node> s2 = new Stack<Node>();
    			s1.push(head);
    			while (!s1.isEmpty()) {
    				head = s1.pop();
    				s2.push(head);
    				if (head.left != null) {
    					s1.push(head.left);
    				}
    				if (head.right != null) {
    					s1.push(head.right);
    				}
    			}
    			while (!s2.isEmpty()) {
    				System.out.print(s2.pop().value + " ");
    			}
    		}
    		System.out.println();
    	}
    
            // 非递归后序2:用一个栈实现后序遍历,比较有技巧
    	public static void pos2(Node h) {
    		System.out.print("pos-order: ");
    		if (h != null) {
    			Stack<Node> stack = new Stack<Node>();
    			stack.push(h);
    			Node c = null;
    			while (!stack.isEmpty()) {
    				c = stack.peek();
    				if (c.left != null && h != c.left && h != c.right) {
    					stack.push(c.left);
    				} else if (c.right != null && h != c.right) {
    					stack.push(c.right);
    				} else {
    					System.out.print(stack.pop().value + " ");
    					h = c;
    				}
    			}
    		}
    		System.out.println();
    	}
    
    	public static void main(String[] args) {
    		Node head = new Node(1);
    		head.left = new Node(2);
    		head.right = new Node(3);
    		head.left.left = new Node(4);
    		head.left.right = new Node(5);
    		head.right.left = new Node(6);
    		head.right.right = new Node(7);
    
    		pre(head);
    		System.out.println("========");
    		in(head);
    		System.out.println("========");
    		pos1(head);
    		System.out.println("========");
    		pos2(head);
    		System.out.println("========");
    	}
    
    }
    
    

    1.1.4 二叉树按层遍历

    1、 其实就是宽度优先遍历,用队列

    2、 可以通过设置flag变量的方式,来发现某一层的结束

    按层打印输出二叉树

    package class07;
    
    import java.util.LinkedList;
    import java.util.Queue;
    
    public class Code03_LevelTraversalBT {
    
    	public static class Node {
    		public int value;
    		public Node left;
    		public Node right;
    
    		public Node(int v) {
    			value = v;
    		}
    	}
    
    	public static void level(Node head) {
    		if (head == null) {
    			return;
    		}
    		// 准备一个辅助队列
    		Queue<Node> queue = new LinkedList<>();
    		// 加入头结点
    		queue.add(head);
    		// 队列不为空出队打印,把当前节点的左右孩子加入队列
    		while (!queue.isEmpty()) {
    			Node cur = queue.poll();
    			System.out.println(cur.value);
    			if (cur.left != null) {
    				queue.add(cur.left);
    			}
    			if (cur.right != null) {
    				queue.add(cur.right);
    			}
    		}
    	}
    
    	public static void main(String[] args) {
    		Node head = new Node(1);
    		head.left = new Node(2);
    		head.right = new Node(3);
    		head.left.left = new Node(4);
    		head.left.right = new Node(5);
    		head.right.left = new Node(6);
    		head.right.right = new Node(7);
    
    		level(head);
    		System.out.println("========");
    	}
    
    }
    
    

    找到二叉树的最大宽度

    package class07;
    
    import java.util.HashMap;
    import java.util.LinkedList;
    import java.util.Queue;
    
    public class Code06_TreeMaxWidth {
    
    	public static class Node {
    		public int value;
    		public Node left;
    		public Node right;
    
    		public Node(int data) {
    			this.value = data;
    		}
    	}
    
            // 方法1使用map
    	public static int maxWidthUseMap(Node head) {
    		if (head == null) {
    			return 0;
    		}
    		Queue<Node> queue = new LinkedList<>();
    		queue.add(head);
    		// key(节点) 在 哪一层,value
    		HashMap<Node, Integer> levelMap = new HashMap<>();
    		// head在第一层
    		levelMap.put(head, 1);
    		// 当前你正在统计哪一层的宽度
    		int curLevel = 1; 
    		// 当前层curLevel层,宽度目前是多少
    		int curLevelNodes = 0; 
    		// 用来保存所有层的最大值,也就是最大宽度
    		int max = 0;
    		while (!queue.isEmpty()) {
    			Node cur = queue.poll();
    			int curNodeLevel = levelMap.get(cur);
    			// 当前节点的左孩子不为空,队列加入左孩子,层数在之前层上加1
    			if (cur.left != null) {
    				levelMap.put(cur.left, curNodeLevel + 1);
    				queue.add(cur.left);
    			}
    			// 当前节点的右孩子不为空,队列加入右孩子,层数也变为当前节点的层数加1
    			if (cur.right != null) {
    				levelMap.put(cur.right, curNodeLevel + 1);
    				queue.add(cur.right);
    			}
    			// 当前层等于正在统计的层数,不结算
    			if (curNodeLevel == curLevel) {
    				curLevelNodes++;
    			} else {
    			    // 新的一层,需要结算
    			    // 得到目前为止的最大宽度
    				max = Math.max(max, curLevelNodes);
    				curLevel++;
    				// 结算后,当前层节点数设置为1
    				curLevelNodes = 1;
    			}
    		}
    		// 由于最后一层,没有新的一层去结算,所以这里单独结算最后一层
    		max = Math.max(max, curLevelNodes);
    		return max;
    	}
    
            // 方法2不使用map
    	public static int maxWidthNoMap(Node head) {
    		if (head == null) {
    			return 0;
    		}
    		Queue<Node> queue = new LinkedList<>();
    		queue.add(head);
    		// 当前层,最右节点是谁,初始head的就是本身
    		Node curEnd = head; 
    		// 如果有下一层,下一层最右节点是谁
    		Node nextEnd = null; 
    		// 全局最大宽度
    		int max = 0;
    		// 当前层的节点数
    		int curLevelNodes = 0; 
    		while (!queue.isEmpty()) {
    			Node cur = queue.poll();
    			// 左边不等于空,加入左
    			if (cur.left != null) {
    				queue.add(cur.left);
    				// 孩子的最右节点暂时为左节点
    				nextEnd = cur.left;
    			}
    			// 右边不等于空,加入右
    			if (cur.right != null) {
    				queue.add(cur.right);
    				// 如果有右节点,孩子层的最右要更新为右节点
    				nextEnd = cur.right;
    			}
    			// 由于最开始弹出当前节点,那么该层的节点数加一
    			curLevelNodes++;
    			// 当前节点是当前层最右的节点,进行结算
    			if (cur == curEnd) {
    			    // 当前层的节点和max进行比较,计算当前最大的max
    				max = Math.max(max, curLevelNodes);
    				// 即将进入下一层,重置下一层节点为0个节点
    				curLevelNodes = 0;
    				// 当前层的最右,直接更新为找出来的下一层最右
    				curEnd = nextEnd;
    			}
    		}
    		return max;
    	}
    
    	// for test
    	public static Node generateRandomBST(int maxLevel, int maxValue) {
    		return generate(1, maxLevel, maxValue);
    	}
    
    	// for test
    	public static Node generate(int level, int maxLevel, int maxValue) {
    		if (level > maxLevel || Math.random() < 0.5) {
    			return null;
    		}
    		Node head = new Node((int) (Math.random() * maxValue));
    		head.left = generate(level + 1, maxLevel, maxValue);
    		head.right = generate(level + 1, maxLevel, maxValue);
    		return head;
    	}
    
    	public static void main(String[] args) {
    		int maxLevel = 10;
    		int maxValue = 100;
    		int testTimes = 1000000;
    		for (int i = 0; i < testTimes; i++) {
    			Node head = generateRandomBST(maxLevel, maxValue);
    			if (maxWidthUseMap(head) != maxWidthNoMap(head)) {
    				System.out.println("Oops!");
    			}
    		}
    		System.out.println("finish!");
    
    	}
    
    }
    

    1.2 二叉树的序列化和反序列化

    1、 可以用先序或者中序或者后序或者按层遍历,来实现二叉树的序列化

    2、 用了什么方式的序列化,就用什么方式的反序列化

    由于如果树上的节点值相同,那么序列化看不出来该树的结构,所以我们的序列化要加上空间结构的标识,空节点补全的方式。

    package class07;
    
    import java.util.LinkedList;
    import java.util.Queue;
    import java.util.Stack;
    
    public class Code04_SerializeAndReconstructTree {
        /*
         * 二叉树可以通过先序、后序或者按层遍历的方式序列化和反序列化,
         * 以下代码全部实现了。
         * 但是,二叉树无法通过中序遍历的方式实现序列化和反序列化
         * 因为不同的两棵树,可能得到同样的中序序列,即便补了空位置也可能一样。
         * 比如如下两棵树
         *         __2
         *        /
         *       1
         *       和
         *       1__
         *          
         *           2
         * 补足空位置的中序遍历结果都是{ null, 1, null, 2, null}
         *       
         * */
    	public static class Node {
    		public int value;
    		public Node left;
    		public Node right;
    
    		public Node(int data) {
    			this.value = data;
    		}
    	}
    
            // 先序序列化
    	public static Queue<String> preSerial(Node head) {
    		Queue<String> ans = new LinkedList<>();
    		// 先序的序列化结果依次放入队列中去
    		pres(head, ans);
    		return ans;
    	}
    
    	public static void pres(Node head, Queue<String> ans) {
    		if (head == null) {
    			ans.add(null);
    		} else {
    			ans.add(String.valueOf(head.value));
    			pres(head.left, ans);
    			pres(head.right, ans);
    		}
    	}
    
            // 中序有问题。见文件开头注释
    	public static Queue<String> inSerial(Node head) {
    		Queue<String> ans = new LinkedList<>();
    		ins(head, ans);
    		return ans;
    	}
    
    	public static void ins(Node head, Queue<String> ans) {
    		if (head == null) {
    			ans.add(null);
    		} else {
    			ins(head.left, ans);
    			ans.add(String.valueOf(head.value));
    			ins(head.right, ans);
    		}
    	}
    
            // 后序序列化
    	public static Queue<String> posSerial(Node head) {
    		Queue<String> ans = new LinkedList<>();
    		poss(head, ans);
    		return ans;
    	}
    
    	public static void poss(Node head, Queue<String> ans) {
    		if (head == null) {
    			ans.add(null);
    		} else {
    			poss(head.left, ans);
    			poss(head.right, ans);
    			ans.add(String.valueOf(head.value));
    		}
    	}
    
            // 根据先序的结构,构建这颗树
    	public static Node buildByPreQueue(Queue<String> prelist) {
    		if (prelist == null || prelist.size() == 0) {
    			return null;
    		}
    		return preb(prelist);
    	}
    
    	public static Node preb(Queue<String> prelist) {
    		String value = prelist.poll();
    		// 如果头节点是空的话,返回空
    		if (value == null) {
    			return null;
    		}
    		// 否则根据第一个值构建先序的头结点
    		Node head = new Node(Integer.valueOf(value));
    		// 递归建立左树
    		head.left = preb(prelist);
    		// 递归建立右树
    		head.right = preb(prelist);
    		return head;
    	}
        
            // 根据后序的结构,构建该树
    	public static Node buildByPosQueue(Queue<String> poslist) {
    		if (poslist == null || poslist.size() == 0) {
    			return null;
    		}
    		// 左右中  ->  stack(中右左)
    		Stack<String> stack = new Stack<>();
    		while (!poslist.isEmpty()) {
    			stack.push(poslist.poll());
    		}
    		return posb(stack);
    	}
    
    	public static Node posb(Stack<String> posstack) {
    		String value = posstack.pop();
    		if (value == null) {
    			return null;
    		}
    		Node head = new Node(Integer.valueOf(value));
    		head.right = posb(posstack);
    		head.left = posb(posstack);
    		return head;
    	}
    
            // 按层序列化,整体上就是宽度优先遍历
    	public static Queue<String> levelSerial(Node head) {
    	        // 序列化结果
    		Queue<String> ans = new LinkedList<>();
    		if (head == null) {
    			ans.add(null);
    		} else {
    		        // 加入一个节点的时候,把该节点的值加入
    			ans.add(String.valueOf(head.value));
    			// 辅助队列
    			Queue<Node> queue = new LinkedList<Node>();
    			queue.add(head);
    			while (!queue.isEmpty()) {
    				head = queue.poll();
    				// 左孩子不为空,即序列化,也加入队列
    				if (head.left != null) {
                	ans.add(String.valueOf(head.left.value));
    					queue.add(head.left);
    				// 左孩子等于空,只序列化,不加入队列
    				} else {
    					ans.add(null);
    				}
    				if (head.right != null) {
    					ans.add(String.valueOf(head.right.value));
    					queue.add(head.right);
    				} else {
    					ans.add(null);
    				}
    			}
    		}
    		return ans;
    	}
    
            // 按层反序列化
    	public static Node buildByLevelQueue(Queue<String> levelList) {
    		if (levelList == null || levelList.size() == 0) {
    			return null;
    		}
    		Node head = generateNode(levelList.poll());
    		Queue<Node> queue = new LinkedList<Node>();
    		if (head != null) {
    			queue.add(head);
    		}
    		Node node = null;
    		while (!queue.isEmpty()) {
    			node = queue.poll();
    			// 不管左右孩子是否为空,都要加节点
    			node.left = generateNode(levelList.poll());
    			node.right = generateNode(levelList.poll());
    			// 左孩子不为空,队列加左,为建下一层做准备
    			if (node.left != null) {
    				queue.add(node.left);
    			}
    			// 右孩子不为空,队列加右,为建下一层做准备
    			if (node.right != null) {
    				queue.add(node.right);
    			}
    		}
    		return head;
    	}
    
    	public static Node generateNode(String val) {
    		if (val == null) {
    			return null;
    		}
    		return new Node(Integer.valueOf(val));
    	}
    
    	// for test
    	public static Node generateRandomBST(int maxLevel, int maxValue) {
    		return generate(1, maxLevel, maxValue);
    	}
    
    	// for test
    	public static Node generate(int level, int maxLevel, int maxValue) {
    		if (level > maxLevel || Math.random() < 0.5) {
    			return null;
    		}
    		Node head = new Node((int) (Math.random() * maxValue));
    		head.left = generate(level + 1, maxLevel, maxValue);
    		head.right = generate(level + 1, maxLevel, maxValue);
    		return head;
    	}
    
    	// for test
    	public static boolean isSameValueStructure(Node head1, Node head2) {
    		if (head1 == null && head2 != null) {
    			return false;
    		}
    		if (head1 != null && head2 == null) {
    			return false;
    		}
    		if (head1 == null && head2 == null) {
    			return true;
    		}
    		if (head1.value != head2.value) {
    			return false;
    		}
    		return isSameValueStructure(head1.left, head2.left) && isSameValueStructure(head1.right, head2.right);
    	}
    
    	// for test
    	public static void printTree(Node head) {
    		System.out.println("Binary Tree:");
    		printInOrder(head, 0, "H", 17);
    		System.out.println();
    	}
    
    	public static void printInOrder(Node head, int height, String to, int len) {
    		if (head == null) {
    			return;
    		}
    		printInOrder(head.right, height + 1, "v", len);
    		String val = to + head.value + to;
    		int lenM = val.length();
    		int lenL = (len - lenM) / 2;
    		int lenR = len - lenM - lenL;
    		val = getSpace(lenL) + val + getSpace(lenR);
    		System.out.println(getSpace(height * len) + val);
    		printInOrder(head.left, height + 1, "^", len);
    	}
    
    	public static String getSpace(int num) {
    		String space = " ";
    		StringBuffer buf = new StringBuffer("");
    		for (int i = 0; i < num; i++) {
    			buf.append(space);
    		}
    		return buf.toString();
    	}
    
    	public static void main(String[] args) {
    		int maxLevel = 5;
    		int maxValue = 100;
    		int testTimes = 1000000;
    		System.out.println("test begin");
    		for (int i = 0; i < testTimes; i++) {
    			Node head = generateRandomBST(maxLevel, maxValue);
    			Queue<String> pre = preSerial(head);
    			Queue<String> pos = posSerial(head);
    			Queue<String> level = levelSerial(head);
    			Node preBuild = buildByPreQueue(pre);
    			Node posBuild = buildByPosQueue(pos);
    			Node levelBuild = buildByLevelQueue(level);
    			if (!isSameValueStructure(preBuild, posBuild) || !isSameValueStructure(posBuild, levelBuild)) {
    				System.out.println("Oops!");
    			}
    		}
    		System.out.println("test finish!");
    		
    	}
    }
    

    1.3 直观打印一颗二叉树

    如何设计一个打印整颗数的打印函数,简单起见,我们躺着打印,正常的树我们顺时针旋转90°即可

    package class07;
    
    public class Code05_PrintBinaryTree {
    
    	public static class Node {
    		public int value;
    		public Node left;
    		public Node right;
    
    		public Node(int data) {
    			this.value = data;
    		}
    	}
    
    	public static void printTree(Node head) {
    		System.out.println("Binary Tree:");
    		// 打印函数,先传入头结点
    		printInOrder(head, 0, "H", 17);
    		System.out.println();
    	}
    
            // head表示当前传入节点
            // height当前节点所在的高度
            // to表示当前节点的指向信息
            // len表示打印当前值填充到多少位当成一个完整的值
    	public static void printInOrder(Node head, int height, String to, int len) {
    		if (head == null) {
    			return;
    		}
    		// 递归右树,右树向下指
    		printInOrder(head.right, height + 1, "v", len);
    		/**
    		* 打印自己的值
    		* val 表示值内容
    		**/
    		String val = to + head.value + to;
    		int lenM = val.length();
    		// 按照len算该值左侧需要填充多少空格
    		int lenL = (len - lenM) / 2;
    		// 按照len算该值右侧需要填充多少空格
    		int lenR = len - lenM - lenL;
    		// 实际值加上左右占位,表示每个值包括占位之后大小
    		val = getSpace(lenL) + val + getSpace(lenR);
    		System.out.println(getSpace(height * len) + val);
    		// 递归左树,左树向上指
    		printInOrder(head.left, height + 1, "^", len);
    	}
    
            // 根据height*len补空格
    	public static String getSpace(int num) {
    		String space = " ";
    		StringBuffer buf = new StringBuffer("");
    		for (int i = 0; i < num; i++) {
    			buf.append(space);
    		}
    		return buf.toString();
    	}
    
    	public static void main(String[] args) {
    		Node head = new Node(1);
    		head.left = new Node(-222222222);
    		head.right = new Node(3);
    		head.left.left = new Node(Integer.MIN_VALUE);
    		head.right.left = new Node(55555555);
    		head.right.right = new Node(66);
    		head.left.left.right = new Node(777);
    		printTree(head);
    
    		head = new Node(1);
    		head.left = new Node(2);
    		head.right = new Node(3);
    		head.left.left = new Node(4);
    		head.right.left = new Node(5);
    		head.right.right = new Node(6);
    		head.left.left.right = new Node(7);
    		printTree(head);
    
    		head = new Node(1);
    		head.left = new Node(1);
    		head.right = new Node(1);
    		head.left.left = new Node(1);
    		head.right.left = new Node(1);
    		head.right.right = new Node(1);
    		head.left.left.right = new Node(1);
    		printTree(head);
    
    	}
    
    }
    
    

    1.4 题目实战

    1.4.1 题目一:返回二叉树的后继节点

    题目描述:二叉树的结构定义如下:

    Class Node {
        V value;
        Node left;
        Node right;
        // 指向父亲节点
        Node parent;
    }
    

    给你二叉树中的某个节点,返回该节点的后继节点。后继节点表示一颗二叉树中,在中序遍历的序列中,一个个节点的下一个节点是谁。

    方法一,通常解法思路:由于我们的节点有指向父节点的指针,而整颗二叉树的头结点的父节点为null。那么我们可以找到整棵树的头结点,然后中序遍历,再找到给定节点的下一个节点,就是该节点的后续节点。

    方法二,考虑一个节点和其后继节点的结构之间的关系:

    如果一个节点x有右树,那么其后继节点就是右树最左的节点。

    如果x没有右树,往上找父亲节点。如果x是其父亲的右孩子继续往上找,如果某节点是其父亲节点的左孩子,那么该节点的父亲就是x的后继节点

    即如果某节点左树的最右节点是x,那么该节点是x的后继

    如果找父节点,一直找到null都不满足,那么该节点是整棵树的最右节点,没有后继

    package class07;
    
    public class Code07_SuccessorNode {
    
    	public static class Node {
    		public int value;
    		public Node left;
    		public Node right;
    		public Node parent;
    
    		public Node(int data) {
    			this.value = data;
    		}
    	}
    
            // 给定节点,返回后继
    	public static Node getSuccessorNode(Node node) {
    		if (node == null) {
    			return node;
    		}
    		if (node.right != null) {
    			return getLeftMost(node.right);
    		// 无右子树
    		} else { 
    			Node parent = node.parent;
    			// 当前节点是其父亲节点右孩子,继续
    			while (parent != null && parent.right == node) { 
    				node = parent;
    				parent = node.parent;
    			}
    			return parent;
    		}
    	}
    
            // 找右树上的最左节点
    	public static Node getLeftMost(Node node) {
    		if (node == null) {
    			return node;
    		}
    		while (node.left != null) {
    			node = node.left;
    		}
    		return node;
    	}
    
    	public static void main(String[] args) {
    		Node head = new Node(6);
    		head.parent = null;
    		head.left = new Node(3);
    		head.left.parent = head;
    		head.left.left = new Node(1);
    		head.left.left.parent = head.left;
    		head.left.left.right = new Node(2);
    		head.left.left.right.parent = head.left.left;
    		head.left.right = new Node(4);
    		head.left.right.parent = head.left;
    		head.left.right.right = new Node(5);
    		head.left.right.right.parent = head.left.right;
    		head.right = new Node(9);
    		head.right.parent = head;
    		head.right.left = new Node(8);
    		head.right.left.parent = head.right;
    		head.right.left.left = new Node(7);
    		head.right.left.left.parent = head.right.left;
    		head.right.right = new Node(10);
    		head.right.right.parent = head.right;
    
    		Node test = head.left.left;
    		System.out.println(test.value + " next: " + getSuccessorNode(test).value);
    		test = head.left.left.right;
    		System.out.println(test.value + " next: " + getSuccessorNode(test).value);
    		test = head.left;
    		System.out.println(test.value + " next: " + getSuccessorNode(test).value);
    		test = head.left.right;
    		System.out.println(test.value + " next: " + getSuccessorNode(test).value);
    		test = head.left.right.right;
    		System.out.println(test.value + " next: " + getSuccessorNode(test).value);
    		test = head;
    		System.out.println(test.value + " next: " + getSuccessorNode(test).value);
    		test = head.right.left.left;
    		System.out.println(test.value + " next: " + getSuccessorNode(test).value);
    		test = head.right.left;
    		System.out.println(test.value + " next: " + getSuccessorNode(test).value);
    		test = head.right;
    		System.out.println(test.value + " next: " + getSuccessorNode(test).value);
    		test = head.right.right; // 10's next is null
    		System.out.println(test.value + " next: " + getSuccessorNode(test));
    	}
    
    }
    

    后继节点对应的是前驱结点,前驱结点的含义是中序遍历,某节点的前一个节点

    1.4.2 题目二:折纸问题

    请把一段纸条竖着放在桌子上,然后从纸条的下边向上方对折1次,压出折痕后展开。

    此时折痕是凹下去的,即折痕凸起的方向指向纸条的背面。

    如果从纸条的下边向上方对折2次,压出折痕后展开,此时有三条折痕,从上到下依次是下折痕,下折痕和上折痕。

    给定一个输入参数N,代表纸条都从下边向上方连续对折N次。请从上到下打印所有的折痕的方向。

    例如:N=1时,打印: down 。N=2时,打印:down down up

    规律,大于一次后,每次折痕出现的位置都是在上次折痕的上方出现凹折痕,下方出现凸折痕。所以我们没必要构建这颗树,就可以用递归思维解决

    对应的树结构按层输出为:
                1凹
        2凹             2凸
    3凹     3凸     3凹     3凸
    
    package class07;
    
    public class Code08_PaperFolding {
    
    	public static void printAllFolds(int N) {
    	        // 先从头结点出发,i初始值为1,切第一次的头结点折痕为凹折痕
    		printProcess(1, N, true);
    	}
    
    	// 递归过程,来到了某一个节点,
    	// i是节点的层数,N一共的层数,down == true  凹    down == false 凸
    	public static void printProcess(int i, int N, boolean down) {
    		if (i > N) {
    			return;
    		}
    		// 每个当前节点的左子节点是凹
    		printProcess(i + 1, N, true);
    		System.out.println(down ? "凹 " : "凸 ");
    		// 每个当前节点的右子树是凸
    		printProcess(i + 1, N, false);
    	}
    
    	public static void main(String[] args) {
    		int N = 3;
    		// 折N次,打印所有凹凸分布情况
    		printAllFolds(N);
    	}
    }
    
  • 相关阅读:
    【笔记】DSP程序烧写问题
    图解DotNet框架之二:System
    图解DotNet框架之一:编译与执行引擎(下)
    图解DotNet框架之四:System.Data
    图解DotNet框架之九:WPF
    图解DotNet框架之十:WCF(Remoting,Webservice)
    图解DotNet框架之一:编译与执行引擎(上)
    图解DotNet框架之六:System.XML
    反射手册笔记 2.程序集,对象和类型
    图解DotNet框架之三:System.IO
  • 原文地址:https://www.cnblogs.com/darope/p/13390272.html
Copyright © 2011-2022 走看看