1 二叉树基本算法
转载注明出处,源码地址: https://github.com/Dairongpeng/algorithm-note ,欢迎star
1.1 二叉树的遍历
1.1.1 二叉树节点定义
Class Node{
// 节点的值类型
V value;
// 二叉树的左孩子指针
Node left;
// 二叉树的右孩子指针
Node right;
}
1.1.2 递归实现先序中序后序遍历
先序:任何子树的处理顺序都是,先头结点,再左子树,再右子树。先处理头结点
中序:任何子树的处理顺序都是,先左子树,再头结点,再右子树。中间处理头结点
后序:任何子树的处理顺序都是,先左子树,再右子树,再头结点。最后处理头结点
对于下面的一棵树:
graph TD
1-->2
1-->3
2-->4
2-->5
3-->6
3-->7
1、 先序遍历为:1 2 4 5 3 6 7
2、 中序遍历为:4 2 5 1 6 3 7
3、 后序遍历为:4 5 2 6 7 3 1
package class07;
public class Code01_RecursiveTraversalBT {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int v) {
value = v;
}
}
public static void f(Node head) {
if (head == null) {
return;
}
// 1 此处打印等于先序
f(head.left);
// 2 此处打印等于中序
f(head.right);
// 3 此处打印等于后序
}
// 先序打印所有节点
public static void pre(Node head) {
if (head == null) {
return;
}
// 打印头
System.out.println(head.value);
// 递归打印左子树
pre(head.left);
// 递归打印右子树
pre(head.right);
}
// 中序遍历
public static void in(Node head) {
if (head == null) {
return;
}
in(head.left);
System.out.println(head.value);
in(head.right);
}
// 后序遍历
public static void pos(Node head) {
if (head == null) {
return;
}
pos(head.left);
pos(head.right);
System.out.println(head.value);
}
public static void main(String[] args) {
Node head = new Node(1);
head.left = new Node(2);
head.right = new Node(3);
head.left.left = new Node(4);
head.left.right = new Node(5);
head.right.left = new Node(6);
head.right.right = new Node(7);
pre(head);
System.out.println("========");
in(head);
System.out.println("========");
pos(head);
System.out.println("========");
}
}
结论:对于树的递归,每个节点实质上会到达三次,例如上文的树结构,对于f函数,我们传入头结点,再调用左树再调用右树。实质上经过的路径为1 2 4 4 4 2 5 5 5 2 1 3 6 6 6 3 7 7 7 3 1。我们在每个节点三次返回的基础上,第一次到达该节点就打印,就是先序,第二次到达该节点打印就是中序,第三次到达该节点就是后序。
所以先序中序后序,只是我们的递归顺序加工出来的结果!
1.1.3 非递归实现先序中序后序遍历
思路:由于任何递归可以改为非递归,我们可以使用压栈来实现。用先序实现的步骤,其他类似:
步骤一,把节点压入栈中,弹出就打印
步骤二,如果有右孩子先压入右孩子
步骤三,如果有左孩子压入左孩子
package class07;
import java.util.Stack;
public class Code02_UnRecursiveTraversalBT {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int v) {
value = v;
}
}
// 非递归先序
public static void pre(Node head) {
System.out.print("pre-order: ");
if (head != null) {
Stack<Node> stack = new Stack<Node>();
stack.add(head);
while (!stack.isEmpty()) {
// 弹出就打印
head = stack.pop();
System.out.print(head.value + " ");
// 右孩子不为空,压右
if (head.right != null) {
stack.push(head.right);
}
// 左孩子不为空,压左
if (head.left != null) {
stack.push(head.left);
}
}
}
System.out.println();
}
// 非递归中序
public static void in(Node head) {
System.out.print("in-order: ");
if (head != null) {
Stack<Node> stack = new Stack<Node>();
while (!stack.isEmpty() || head != null) {
// 整条左边界依次入栈
if (head != null) {
stack.push(head);
head = head.left;
// 左边界到头弹出一个打印,来到该节点右节点,再把该节点的左树以此进栈
} else {
head = stack.pop();
System.out.print(head.value + " ");
head = head.right;
}
}
}
System.out.println();
}
// 非递归后序
public static void pos1(Node head) {
System.out.print("pos-order: ");
if (head != null) {
Stack<Node> s1 = new Stack<Node>();
// 辅助栈
Stack<Node> s2 = new Stack<Node>();
s1.push(head);
while (!s1.isEmpty()) {
head = s1.pop();
s2.push(head);
if (head.left != null) {
s1.push(head.left);
}
if (head.right != null) {
s1.push(head.right);
}
}
while (!s2.isEmpty()) {
System.out.print(s2.pop().value + " ");
}
}
System.out.println();
}
// 非递归后序2:用一个栈实现后序遍历,比较有技巧
public static void pos2(Node h) {
System.out.print("pos-order: ");
if (h != null) {
Stack<Node> stack = new Stack<Node>();
stack.push(h);
Node c = null;
while (!stack.isEmpty()) {
c = stack.peek();
if (c.left != null && h != c.left && h != c.right) {
stack.push(c.left);
} else if (c.right != null && h != c.right) {
stack.push(c.right);
} else {
System.out.print(stack.pop().value + " ");
h = c;
}
}
}
System.out.println();
}
public static void main(String[] args) {
Node head = new Node(1);
head.left = new Node(2);
head.right = new Node(3);
head.left.left = new Node(4);
head.left.right = new Node(5);
head.right.left = new Node(6);
head.right.right = new Node(7);
pre(head);
System.out.println("========");
in(head);
System.out.println("========");
pos1(head);
System.out.println("========");
pos2(head);
System.out.println("========");
}
}
1.1.4 二叉树按层遍历
1、 其实就是宽度优先遍历,用队列
2、 可以通过设置flag变量的方式,来发现某一层的结束
按层打印输出二叉树
package class07;
import java.util.LinkedList;
import java.util.Queue;
public class Code03_LevelTraversalBT {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int v) {
value = v;
}
}
public static void level(Node head) {
if (head == null) {
return;
}
// 准备一个辅助队列
Queue<Node> queue = new LinkedList<>();
// 加入头结点
queue.add(head);
// 队列不为空出队打印,把当前节点的左右孩子加入队列
while (!queue.isEmpty()) {
Node cur = queue.poll();
System.out.println(cur.value);
if (cur.left != null) {
queue.add(cur.left);
}
if (cur.right != null) {
queue.add(cur.right);
}
}
}
public static void main(String[] args) {
Node head = new Node(1);
head.left = new Node(2);
head.right = new Node(3);
head.left.left = new Node(4);
head.left.right = new Node(5);
head.right.left = new Node(6);
head.right.right = new Node(7);
level(head);
System.out.println("========");
}
}
找到二叉树的最大宽度
package class07;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Queue;
public class Code06_TreeMaxWidth {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
// 方法1使用map
public static int maxWidthUseMap(Node head) {
if (head == null) {
return 0;
}
Queue<Node> queue = new LinkedList<>();
queue.add(head);
// key(节点) 在 哪一层,value
HashMap<Node, Integer> levelMap = new HashMap<>();
// head在第一层
levelMap.put(head, 1);
// 当前你正在统计哪一层的宽度
int curLevel = 1;
// 当前层curLevel层,宽度目前是多少
int curLevelNodes = 0;
// 用来保存所有层的最大值,也就是最大宽度
int max = 0;
while (!queue.isEmpty()) {
Node cur = queue.poll();
int curNodeLevel = levelMap.get(cur);
// 当前节点的左孩子不为空,队列加入左孩子,层数在之前层上加1
if (cur.left != null) {
levelMap.put(cur.left, curNodeLevel + 1);
queue.add(cur.left);
}
// 当前节点的右孩子不为空,队列加入右孩子,层数也变为当前节点的层数加1
if (cur.right != null) {
levelMap.put(cur.right, curNodeLevel + 1);
queue.add(cur.right);
}
// 当前层等于正在统计的层数,不结算
if (curNodeLevel == curLevel) {
curLevelNodes++;
} else {
// 新的一层,需要结算
// 得到目前为止的最大宽度
max = Math.max(max, curLevelNodes);
curLevel++;
// 结算后,当前层节点数设置为1
curLevelNodes = 1;
}
}
// 由于最后一层,没有新的一层去结算,所以这里单独结算最后一层
max = Math.max(max, curLevelNodes);
return max;
}
// 方法2不使用map
public static int maxWidthNoMap(Node head) {
if (head == null) {
return 0;
}
Queue<Node> queue = new LinkedList<>();
queue.add(head);
// 当前层,最右节点是谁,初始head的就是本身
Node curEnd = head;
// 如果有下一层,下一层最右节点是谁
Node nextEnd = null;
// 全局最大宽度
int max = 0;
// 当前层的节点数
int curLevelNodes = 0;
while (!queue.isEmpty()) {
Node cur = queue.poll();
// 左边不等于空,加入左
if (cur.left != null) {
queue.add(cur.left);
// 孩子的最右节点暂时为左节点
nextEnd = cur.left;
}
// 右边不等于空,加入右
if (cur.right != null) {
queue.add(cur.right);
// 如果有右节点,孩子层的最右要更新为右节点
nextEnd = cur.right;
}
// 由于最开始弹出当前节点,那么该层的节点数加一
curLevelNodes++;
// 当前节点是当前层最右的节点,进行结算
if (cur == curEnd) {
// 当前层的节点和max进行比较,计算当前最大的max
max = Math.max(max, curLevelNodes);
// 即将进入下一层,重置下一层节点为0个节点
curLevelNodes = 0;
// 当前层的最右,直接更新为找出来的下一层最右
curEnd = nextEnd;
}
}
return max;
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 10;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (maxWidthUseMap(head) != maxWidthNoMap(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
1.2 二叉树的序列化和反序列化
1、 可以用先序或者中序或者后序或者按层遍历,来实现二叉树的序列化
2、 用了什么方式的序列化,就用什么方式的反序列化
由于如果树上的节点值相同,那么序列化看不出来该树的结构,所以我们的序列化要加上空间结构的标识,空节点补全的方式。
package class07;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;
public class Code04_SerializeAndReconstructTree {
/*
* 二叉树可以通过先序、后序或者按层遍历的方式序列化和反序列化,
* 以下代码全部实现了。
* 但是,二叉树无法通过中序遍历的方式实现序列化和反序列化
* 因为不同的两棵树,可能得到同样的中序序列,即便补了空位置也可能一样。
* 比如如下两棵树
* __2
* /
* 1
* 和
* 1__
*
* 2
* 补足空位置的中序遍历结果都是{ null, 1, null, 2, null}
*
* */
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
// 先序序列化
public static Queue<String> preSerial(Node head) {
Queue<String> ans = new LinkedList<>();
// 先序的序列化结果依次放入队列中去
pres(head, ans);
return ans;
}
public static void pres(Node head, Queue<String> ans) {
if (head == null) {
ans.add(null);
} else {
ans.add(String.valueOf(head.value));
pres(head.left, ans);
pres(head.right, ans);
}
}
// 中序有问题。见文件开头注释
public static Queue<String> inSerial(Node head) {
Queue<String> ans = new LinkedList<>();
ins(head, ans);
return ans;
}
public static void ins(Node head, Queue<String> ans) {
if (head == null) {
ans.add(null);
} else {
ins(head.left, ans);
ans.add(String.valueOf(head.value));
ins(head.right, ans);
}
}
// 后序序列化
public static Queue<String> posSerial(Node head) {
Queue<String> ans = new LinkedList<>();
poss(head, ans);
return ans;
}
public static void poss(Node head, Queue<String> ans) {
if (head == null) {
ans.add(null);
} else {
poss(head.left, ans);
poss(head.right, ans);
ans.add(String.valueOf(head.value));
}
}
// 根据先序的结构,构建这颗树
public static Node buildByPreQueue(Queue<String> prelist) {
if (prelist == null || prelist.size() == 0) {
return null;
}
return preb(prelist);
}
public static Node preb(Queue<String> prelist) {
String value = prelist.poll();
// 如果头节点是空的话,返回空
if (value == null) {
return null;
}
// 否则根据第一个值构建先序的头结点
Node head = new Node(Integer.valueOf(value));
// 递归建立左树
head.left = preb(prelist);
// 递归建立右树
head.right = preb(prelist);
return head;
}
// 根据后序的结构,构建该树
public static Node buildByPosQueue(Queue<String> poslist) {
if (poslist == null || poslist.size() == 0) {
return null;
}
// 左右中 -> stack(中右左)
Stack<String> stack = new Stack<>();
while (!poslist.isEmpty()) {
stack.push(poslist.poll());
}
return posb(stack);
}
public static Node posb(Stack<String> posstack) {
String value = posstack.pop();
if (value == null) {
return null;
}
Node head = new Node(Integer.valueOf(value));
head.right = posb(posstack);
head.left = posb(posstack);
return head;
}
// 按层序列化,整体上就是宽度优先遍历
public static Queue<String> levelSerial(Node head) {
// 序列化结果
Queue<String> ans = new LinkedList<>();
if (head == null) {
ans.add(null);
} else {
// 加入一个节点的时候,把该节点的值加入
ans.add(String.valueOf(head.value));
// 辅助队列
Queue<Node> queue = new LinkedList<Node>();
queue.add(head);
while (!queue.isEmpty()) {
head = queue.poll();
// 左孩子不为空,即序列化,也加入队列
if (head.left != null) {
ans.add(String.valueOf(head.left.value));
queue.add(head.left);
// 左孩子等于空,只序列化,不加入队列
} else {
ans.add(null);
}
if (head.right != null) {
ans.add(String.valueOf(head.right.value));
queue.add(head.right);
} else {
ans.add(null);
}
}
}
return ans;
}
// 按层反序列化
public static Node buildByLevelQueue(Queue<String> levelList) {
if (levelList == null || levelList.size() == 0) {
return null;
}
Node head = generateNode(levelList.poll());
Queue<Node> queue = new LinkedList<Node>();
if (head != null) {
queue.add(head);
}
Node node = null;
while (!queue.isEmpty()) {
node = queue.poll();
// 不管左右孩子是否为空,都要加节点
node.left = generateNode(levelList.poll());
node.right = generateNode(levelList.poll());
// 左孩子不为空,队列加左,为建下一层做准备
if (node.left != null) {
queue.add(node.left);
}
// 右孩子不为空,队列加右,为建下一层做准备
if (node.right != null) {
queue.add(node.right);
}
}
return head;
}
public static Node generateNode(String val) {
if (val == null) {
return null;
}
return new Node(Integer.valueOf(val));
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
// for test
public static boolean isSameValueStructure(Node head1, Node head2) {
if (head1 == null && head2 != null) {
return false;
}
if (head1 != null && head2 == null) {
return false;
}
if (head1 == null && head2 == null) {
return true;
}
if (head1.value != head2.value) {
return false;
}
return isSameValueStructure(head1.left, head2.left) && isSameValueStructure(head1.right, head2.right);
}
// for test
public static void printTree(Node head) {
System.out.println("Binary Tree:");
printInOrder(head, 0, "H", 17);
System.out.println();
}
public static void printInOrder(Node head, int height, String to, int len) {
if (head == null) {
return;
}
printInOrder(head.right, height + 1, "v", len);
String val = to + head.value + to;
int lenM = val.length();
int lenL = (len - lenM) / 2;
int lenR = len - lenM - lenL;
val = getSpace(lenL) + val + getSpace(lenR);
System.out.println(getSpace(height * len) + val);
printInOrder(head.left, height + 1, "^", len);
}
public static String getSpace(int num) {
String space = " ";
StringBuffer buf = new StringBuffer("");
for (int i = 0; i < num; i++) {
buf.append(space);
}
return buf.toString();
}
public static void main(String[] args) {
int maxLevel = 5;
int maxValue = 100;
int testTimes = 1000000;
System.out.println("test begin");
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
Queue<String> pre = preSerial(head);
Queue<String> pos = posSerial(head);
Queue<String> level = levelSerial(head);
Node preBuild = buildByPreQueue(pre);
Node posBuild = buildByPosQueue(pos);
Node levelBuild = buildByLevelQueue(level);
if (!isSameValueStructure(preBuild, posBuild) || !isSameValueStructure(posBuild, levelBuild)) {
System.out.println("Oops!");
}
}
System.out.println("test finish!");
}
}
1.3 直观打印一颗二叉树
如何设计一个打印整颗数的打印函数,简单起见,我们躺着打印,正常的树我们顺时针旋转90°即可
package class07;
public class Code05_PrintBinaryTree {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static void printTree(Node head) {
System.out.println("Binary Tree:");
// 打印函数,先传入头结点
printInOrder(head, 0, "H", 17);
System.out.println();
}
// head表示当前传入节点
// height当前节点所在的高度
// to表示当前节点的指向信息
// len表示打印当前值填充到多少位当成一个完整的值
public static void printInOrder(Node head, int height, String to, int len) {
if (head == null) {
return;
}
// 递归右树,右树向下指
printInOrder(head.right, height + 1, "v", len);
/**
* 打印自己的值
* val 表示值内容
**/
String val = to + head.value + to;
int lenM = val.length();
// 按照len算该值左侧需要填充多少空格
int lenL = (len - lenM) / 2;
// 按照len算该值右侧需要填充多少空格
int lenR = len - lenM - lenL;
// 实际值加上左右占位,表示每个值包括占位之后大小
val = getSpace(lenL) + val + getSpace(lenR);
System.out.println(getSpace(height * len) + val);
// 递归左树,左树向上指
printInOrder(head.left, height + 1, "^", len);
}
// 根据height*len补空格
public static String getSpace(int num) {
String space = " ";
StringBuffer buf = new StringBuffer("");
for (int i = 0; i < num; i++) {
buf.append(space);
}
return buf.toString();
}
public static void main(String[] args) {
Node head = new Node(1);
head.left = new Node(-222222222);
head.right = new Node(3);
head.left.left = new Node(Integer.MIN_VALUE);
head.right.left = new Node(55555555);
head.right.right = new Node(66);
head.left.left.right = new Node(777);
printTree(head);
head = new Node(1);
head.left = new Node(2);
head.right = new Node(3);
head.left.left = new Node(4);
head.right.left = new Node(5);
head.right.right = new Node(6);
head.left.left.right = new Node(7);
printTree(head);
head = new Node(1);
head.left = new Node(1);
head.right = new Node(1);
head.left.left = new Node(1);
head.right.left = new Node(1);
head.right.right = new Node(1);
head.left.left.right = new Node(1);
printTree(head);
}
}
1.4 题目实战
1.4.1 题目一:返回二叉树的后继节点
题目描述:二叉树的结构定义如下:
Class Node {
V value;
Node left;
Node right;
// 指向父亲节点
Node parent;
}
给你二叉树中的某个节点,返回该节点的后继节点。后继节点表示一颗二叉树中,在中序遍历的序列中,一个个节点的下一个节点是谁。
方法一,通常解法思路:由于我们的节点有指向父节点的指针,而整颗二叉树的头结点的父节点为null。那么我们可以找到整棵树的头结点,然后中序遍历,再找到给定节点的下一个节点,就是该节点的后续节点。
方法二,考虑一个节点和其后继节点的结构之间的关系:
如果一个节点x有右树,那么其后继节点就是右树最左的节点。
如果x没有右树,往上找父亲节点。如果x是其父亲的右孩子继续往上找,如果某节点是其父亲节点的左孩子,那么该节点的父亲就是x的后继节点
即如果某节点左树的最右节点是x,那么该节点是x的后继
如果找父节点,一直找到null都不满足,那么该节点是整棵树的最右节点,没有后继
package class07;
public class Code07_SuccessorNode {
public static class Node {
public int value;
public Node left;
public Node right;
public Node parent;
public Node(int data) {
this.value = data;
}
}
// 给定节点,返回后继
public static Node getSuccessorNode(Node node) {
if (node == null) {
return node;
}
if (node.right != null) {
return getLeftMost(node.right);
// 无右子树
} else {
Node parent = node.parent;
// 当前节点是其父亲节点右孩子,继续
while (parent != null && parent.right == node) {
node = parent;
parent = node.parent;
}
return parent;
}
}
// 找右树上的最左节点
public static Node getLeftMost(Node node) {
if (node == null) {
return node;
}
while (node.left != null) {
node = node.left;
}
return node;
}
public static void main(String[] args) {
Node head = new Node(6);
head.parent = null;
head.left = new Node(3);
head.left.parent = head;
head.left.left = new Node(1);
head.left.left.parent = head.left;
head.left.left.right = new Node(2);
head.left.left.right.parent = head.left.left;
head.left.right = new Node(4);
head.left.right.parent = head.left;
head.left.right.right = new Node(5);
head.left.right.right.parent = head.left.right;
head.right = new Node(9);
head.right.parent = head;
head.right.left = new Node(8);
head.right.left.parent = head.right;
head.right.left.left = new Node(7);
head.right.left.left.parent = head.right.left;
head.right.right = new Node(10);
head.right.right.parent = head.right;
Node test = head.left.left;
System.out.println(test.value + " next: " + getSuccessorNode(test).value);
test = head.left.left.right;
System.out.println(test.value + " next: " + getSuccessorNode(test).value);
test = head.left;
System.out.println(test.value + " next: " + getSuccessorNode(test).value);
test = head.left.right;
System.out.println(test.value + " next: " + getSuccessorNode(test).value);
test = head.left.right.right;
System.out.println(test.value + " next: " + getSuccessorNode(test).value);
test = head;
System.out.println(test.value + " next: " + getSuccessorNode(test).value);
test = head.right.left.left;
System.out.println(test.value + " next: " + getSuccessorNode(test).value);
test = head.right.left;
System.out.println(test.value + " next: " + getSuccessorNode(test).value);
test = head.right;
System.out.println(test.value + " next: " + getSuccessorNode(test).value);
test = head.right.right; // 10's next is null
System.out.println(test.value + " next: " + getSuccessorNode(test));
}
}
后继节点对应的是前驱结点,前驱结点的含义是中序遍历,某节点的前一个节点
1.4.2 题目二:折纸问题
请把一段纸条竖着放在桌子上,然后从纸条的下边向上方对折1次,压出折痕后展开。
此时折痕是凹下去的,即折痕凸起的方向指向纸条的背面。
如果从纸条的下边向上方对折2次,压出折痕后展开,此时有三条折痕,从上到下依次是下折痕,下折痕和上折痕。
给定一个输入参数N,代表纸条都从下边向上方连续对折N次。请从上到下打印所有的折痕的方向。
例如:N=1时,打印: down 。N=2时,打印:down down up
规律,大于一次后,每次折痕出现的位置都是在上次折痕的上方出现凹折痕,下方出现凸折痕。所以我们没必要构建这颗树,就可以用递归思维解决
对应的树结构按层输出为:
1凹
2凹 2凸
3凹 3凸 3凹 3凸
package class07;
public class Code08_PaperFolding {
public static void printAllFolds(int N) {
// 先从头结点出发,i初始值为1,切第一次的头结点折痕为凹折痕
printProcess(1, N, true);
}
// 递归过程,来到了某一个节点,
// i是节点的层数,N一共的层数,down == true 凹 down == false 凸
public static void printProcess(int i, int N, boolean down) {
if (i > N) {
return;
}
// 每个当前节点的左子节点是凹
printProcess(i + 1, N, true);
System.out.println(down ? "凹 " : "凸 ");
// 每个当前节点的右子树是凸
printProcess(i + 1, N, false);
}
public static void main(String[] args) {
int N = 3;
// 折N次,打印所有凹凸分布情况
printAllFolds(N);
}
}