zoukankan      html  css  js  c++  java
  • numpy.convolve()

    卷积函数:

    numpy.convolve(avmode='full')

    Parameters:

    a : (N,) array_like

    First one-dimensional input array.

    v : (M,) array_like

    Second one-dimensional input array.

    mode : {‘full’, ‘valid’, ‘same’}, optional

    ‘full’:

    By default, mode is ‘full’. This returns the convolution at each point of overlap, with an output shape of (N+M-1,). At the end-points of the convolution, the signals do not overlap completely, and boundary effects may be seen.

    ‘same’:

    Mode ‘same’ returns output of length max(M, N). Boundary effects are still visible.

    ‘valid’:

    Mode ‘valid’ returns output of length max(M, N) min(M, N) 1. The convolution product is only given for points where the signals overlap completely. Values outside the signal boundary have no effect.

    Returns:

    out : ndarray

    Discrete, linear convolution of a and v.

    The discrete convolution operation is defined as

    (a * v)[n] = sum_{m = -infty}^{infty} a[m] v[n - m]

    It can be shown that a convolution x(t) * y(t) in time/space is equivalent to the multiplication X(f) Y(f)in the Fourier domain, after appropriate padding (padding is necessary to prevent circular convolution). Since multiplication is more efficient (faster) than convolution, the function scipy.signal.fftconvolveexploits the FFT to calculate the convolution of large data-sets.

    Note how the convolution operator flips the second array before “sliding” the two across one another:

    >>>
    >>> np.convolve([1, 2, 3], [0, 1, 0.5])
    array([ 0. ,  1. ,  2.5,  4. ,  1.5])
    

    Only return the middle values of the convolution. Contains boundary effects, where zeros are taken into account:

    >>>
    >>> np.convolve([1,2,3],[0,1,0.5], 'same')
    array([ 1. ,  2.5,  4. ])
    

    The two arrays are of the same length, so there is only one position where they completely overlap:

    >>>
    >>> np.convolve([1,2,3],[0,1,0.5], 'valid')
    array([ 2.5])
  • 相关阅读:
    python爬虫,scrapy,获取响应的cookie,获取返回的cookie
    this指向
    闭包的10种形式
    nodejs 公私钥文件加密解密
    mysql基础知识
    nodejs 连接mysql 集群,开启事务,事务回滚封装
    pm2 启动eggjs,
    js身份证验证,二代身份证,大陆,权重验证,正规
    nodejs限制IP一段时间内的访问次数
    nodejs链接mysql集群,nodejs PoolCluster : Error: Too many connections
  • 原文地址:https://www.cnblogs.com/data-ccz/p/6133814.html
Copyright © 2011-2022 走看看