zoukankan      html  css  js  c++  java
  • numpy.convolve()

    卷积函数:

    numpy.convolve(avmode='full')

    Parameters:

    a : (N,) array_like

    First one-dimensional input array.

    v : (M,) array_like

    Second one-dimensional input array.

    mode : {‘full’, ‘valid’, ‘same’}, optional

    ‘full’:

    By default, mode is ‘full’. This returns the convolution at each point of overlap, with an output shape of (N+M-1,). At the end-points of the convolution, the signals do not overlap completely, and boundary effects may be seen.

    ‘same’:

    Mode ‘same’ returns output of length max(M, N). Boundary effects are still visible.

    ‘valid’:

    Mode ‘valid’ returns output of length max(M, N) min(M, N) 1. The convolution product is only given for points where the signals overlap completely. Values outside the signal boundary have no effect.

    Returns:

    out : ndarray

    Discrete, linear convolution of a and v.

    The discrete convolution operation is defined as

    (a * v)[n] = sum_{m = -infty}^{infty} a[m] v[n - m]

    It can be shown that a convolution x(t) * y(t) in time/space is equivalent to the multiplication X(f) Y(f)in the Fourier domain, after appropriate padding (padding is necessary to prevent circular convolution). Since multiplication is more efficient (faster) than convolution, the function scipy.signal.fftconvolveexploits the FFT to calculate the convolution of large data-sets.

    Note how the convolution operator flips the second array before “sliding” the two across one another:

    >>>
    >>> np.convolve([1, 2, 3], [0, 1, 0.5])
    array([ 0. ,  1. ,  2.5,  4. ,  1.5])
    

    Only return the middle values of the convolution. Contains boundary effects, where zeros are taken into account:

    >>>
    >>> np.convolve([1,2,3],[0,1,0.5], 'same')
    array([ 1. ,  2.5,  4. ])
    

    The two arrays are of the same length, so there is only one position where they completely overlap:

    >>>
    >>> np.convolve([1,2,3],[0,1,0.5], 'valid')
    array([ 2.5])
  • 相关阅读:
    WPF中各个Template的分析(转)
    WPF TreeView
    微信支付文章综合
    WPF 颜色渐变
    史上最全的厦门英语角!赶紧收藏啦!
    SQL008存储过程总结
    SQL SERVER事务处理
    HTTP 头部解释
    为你详细解读HTTP请求头的具体含意
    IIS部署常见问题总结
  • 原文地址:https://www.cnblogs.com/data-ccz/p/6133814.html
Copyright © 2011-2022 走看看