zoukankan      html  css  js  c++  java
  • task4 建模与调参 打卡

    Datawhale 零基础入门数据挖掘-Task4 建模调参¶
    四、建模与调参

    4.1 学习目标
    了解常用的机器学习模型,并掌握机器学习模型的建模与调参流程
    完成相应学习打卡任务
    4.2 内容介绍
    线性回归模型:
    线性回归对于特征的要求;
    处理长尾分布;
    理解线性回归模型;
    模型性能验证:
    评价函数与目标函数;
    交叉验证方法;
    留一验证方法;
    针对时间序列问题的验证;
    绘制学习率曲线;
    绘制验证曲线;
    嵌入式特征选择:
    Lasso回归;
    Ridge回归;
    决策树;
    模型对比:
    常用线性模型;
    常用非线性模型;
    模型调参:
    贪心调参方法;
    网格调参方法;
    贝叶斯调参方法;
    4.3 相关原理介绍与推荐
    由于相关算法原理篇幅较长,本文推荐了一些博客与教材供初学者们进行学习。

    4.3.1 线性回归模型
    https://zhuanlan.zhihu.com/p/49480391

    4.3.2 决策树模型
    https://zhuanlan.zhihu.com/p/65304798

    4.3.3 GBDT模型
    https://zhuanlan.zhihu.com/p/45145899

    4.3.4 XGBoost模型
    https://zhuanlan.zhihu.com/p/86816771

    4.3.5 LightGBM模型
    https://zhuanlan.zhihu.com/p/89360721

    4.3.6 推荐教材:
    《机器学习》 https://book.douban.com/subject/26708119/
    《统计学习方法》 https://book.douban.com/subject/10590856/
    《Python大战机器学习》 https://book.douban.com/subject/26987890/
    《面向机器学习的特征工程》 https://book.douban.com/subject/26826639/
    《数据科学家访谈录》 https://book.douban.com/subject/30129410/

    代码示例
    4.4.1 读取数据

    1
    import pandas as pd
    2
    import numpy as np
    3
    import warnings
    4
    warnings.filterwarnings('ignore')
    reduce_mem_usage 函数通过调整数据类型,帮助我们减少数据在内存中占用的空间

    1
    def reduce_mem_usage(df):
    2
    """ iterate through all the columns of a dataframe and modify the data type
    3
    to reduce memory usage.
    4
    """
    5
    start_mem = df.memory_usage().sum()
    6
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    7

    8
    for col in df.columns:
    9
    col_type = df[col].dtype
    10

    11
    if col_type != object:
    12
    c_min = df[col].min()
    13
    c_max = df[col].max()
    14
    if str(col_type)[:3] == 'int':
    15
    if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
    16
    df[col] = df[col].astype(np.int8)
    17
    elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
    18
    df[col] = df[col].astype(np.int16)
    19
    elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
    20
    df[col] = df[col].astype(np.int32)
    21
    elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
    22
    df[col] = df[col].astype(np.int64)
    23
    else:
    24
    if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
    25
    df[col] = df[col].astype(np.float16)
    26
    elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
    27
    df[col] = df[col].astype(np.float32)
    28
    else:
    29
    df[col] = df[col].astype(np.float64)
    30
    else:
    31
    df[col] = df[col].astype('category')
    32

    33
    end_mem = df.memory_usage().sum()
    34
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    35
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    36
    return df

    1
    sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv'))
    Memory usage of dataframe is 60507328.00 MB

    Memory usage after optimization is: 15724107.00 MB

    Decreased by 74.0%

    1
    continuous_feature_names = [x for x in sample_feature.columns if x not in ['price','brand','model','brand']]
    4.4.2 线性回归 & 五折交叉验证 & 模拟真实业务情况

    1
    sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True)
    2
    sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32)
    3
    train = sample_feature[continuous_feature_names + ['price']]
    4

    5
    train_X = train[continuous_feature_names]
    6
    train_y = train['price']
    4.4.2 - 1 简单建模

    1
    from sklearn.linear_model import LinearRegression

    1
    model = LinearRegression(normalize=True)

    1
    model = model.fit(train_X, train_y)
    查看训练的线性回归模型的截距(intercept)与权重(coef)

    1
    'intercept:'+ str(model.intercept_)
    2

    3
    sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
    [('v_6', 3342612.384537345),
    , ('v_8', 684205.534533214),
    , ('v_9', 178967.94192530424),
    , ('v_7', 35223.07319016895),
    , ('v_5', 21917.550249749802),
    , ('v_3', 12782.03250792227),
    , ('v_12', 11654.925634146672),
    , ('v_13', 9884.194615297649),
    , ('v_11', 5519.182176035517),
    , ('v_10', 3765.6101415594258),
    , ('gearbox', 900.3205339198406),
    , ('fuelType', 353.5206495542567),
    , ('bodyType', 186.51797317460046),
    , ('city', 45.17354204168846),
    , ('power', 31.163045441455335),
    , ('brand_price_median', 0.535967111869784),
    , ('brand_price_std', 0.4346788365040235),
    , ('brand_amount', 0.15308295553300566),
    , ('brand_price_max', 0.003891831020467389),
    , ('seller', -1.2684613466262817e-06),
    , ('offerType', -4.759058356285095e-06),
    , ('brand_price_sum', -2.2430642281682917e-05),
    , ('name', -0.00042591632723759166),
    , ('used_time', -0.012574429533889028),
    , ('brand_price_average', -0.414105722833381),
    , ('brand_price_min', -2.3163823428971835),
    , ('train', -5.392535065078232),
    , ('power_bin', -59.24591853031839),
    , ('v_14', -233.1604256172217),
    , ('kilometer', -372.96600915402496),
    , ('notRepairedDamage', -449.29703564695365),
    , ('v_0', -1490.6790578168238),
    , ('v_4', -14219.648899108111),
    , ('v_2', -16528.55239086934),
    , ('v_1', -42869.43976200439)]

    1
    from matplotlib import pyplot as plt

    1
    subsample_index = np.random.randint(low=0, high=len(train_y), size=50)
    绘制特征v_9的值与标签的散点图,图片发现模型的预测结果(蓝色点)与真实标签(黑色点)的分布差异较大,且部分预测值出现了小于0的情况,说明我们的模型存在一些问题

    1
    plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
    2
    plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue')
    3
    plt.xlabel('v_9')
    4
    plt.ylabel('price')
    5
    plt.legend(['True Price','Predicted Price'],loc='upper right')
    6
    print('The predicted price is obvious different from true price')
    7
    plt.show()
    The predicted price is obvious different from true price

    通过作图我们发现数据的标签(price)呈现长尾分布,不利于我们的建模预测。原因是很多模型都假设数据误差项符合正态分布,而长尾分布的数据违背了这一假设。参考博客:https://blog.csdn.net/Noob_daniel/article/details/76087829

    1
    import seaborn as sns
    2
    print('It is clear to see the price shows a typical exponential distribution')
    3
    plt.figure(figsize=(15,5))
    4
    plt.subplot(1,2,1)
    5
    sns.distplot(train_y)
    6
    plt.subplot(1,2,2)
    7
    sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])
    It is clear to see the price shows a typical exponential distribution
    <matplotlib.axes._subplots.AxesSubplot at 0x1b33efb2f98>

    在这里我们对标签进行了
    l
    o
    g
    (
    x
    +
    1
    )
    变换,使标签贴近于正态分布

    1
    train_y_ln = np.log(train_y + 1)

    1
    import seaborn as sns
    2
    print('The transformed price seems like normal distribution')
    3
    plt.figure(figsize=(15,5))
    4
    plt.subplot(1,2,1)
    5
    sns.distplot(train_y_ln)
    6
    plt.subplot(1,2,2)
    7
    sns.distplot(train_y_ln[train_y_ln < np.quantile(train_y_ln, 0.9)])
    The transformed price seems like normal distribution
    <matplotlib.axes._subplots.AxesSubplot at 0x1b33f077160>

    1
    model = model.fit(train_X, train_y_ln)
    2

    3
    print('intercept:'+ str(model.intercept_))
    4
    sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
    intercept:23.515920686637713
    [('v_9', 6.043993029165403),
    , ('v_12', 2.0357439855551394),
    , ('v_11', 1.3607608712255672),
    , ('v_1', 1.3079816298861897),
    , ('v_13', 1.0788833838535354),
    , ('v_3', 0.9895814429387444),
    , ('gearbox', 0.009170812023421397),
    , ('fuelType', 0.006447089787635784),
    , ('bodyType', 0.004815242907679581),
    , ('power_bin', 0.003151801949447194),
    , ('power', 0.0012550361843629999),
    , ('train', 0.0001429273782925814),
    , ('brand_price_min', 2.0721302299502698e-05),
    , ('brand_price_average', 5.308179717783439e-06),
    , ('brand_amount', 2.8308531339942507e-06),
    , ('brand_price_max', 6.764442596115763e-07),
    , ('offerType', 1.6765966392995324e-10),
    , ('seller', 9.308109838457312e-12),
    , ('brand_price_sum', -1.3473184925468486e-10),
    , ('name', -7.11403461065247e-08),
    , ('brand_price_median', -1.7608143661053008e-06),
    , ('brand_price_std', -2.7899058266986454e-06),
    , ('used_time', -5.6142735899344175e-06),
    , ('city', -0.0024992974087053223),
    , ('v_14', -0.012754139659375262),
    , ('kilometer', -0.013999175312751872),
    , ('v_0', -0.04553774829634237),
    , ('notRepairedDamage', -0.273686961116076),
    , ('v_7', -0.7455902679730504),
    , ('v_4', -0.9281349233755761),
    , ('v_2', -1.2781892166433606),
    , ('v_5', -1.5458846136756323),
    , ('v_10', -1.8059217242413748),
    , ('v_8', -42.611729973490604),
    , ('v_6', -241.30992120503035)]
    再次进行可视化,发现预测结果与真实值较为接近,且未出现异常状况
    plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
    plt.scatter(train_X['v_9'][subsample_index], np.exp(model.predict(train_X.loc[subsample_index])), color='blue')
    plt.xlabel('v_9')
    plt.ylabel('price')
    plt.legend(['True Price','Predicted Price'],loc='upper right')
    print('The predicted price seems normal after np.log transforming')
    plt.show()
    The predicted price seems normal after np.log transforming

    5.4.2 - 2 五折交叉验证
    在使用训练集对参数进行训练的时候,经常会发现人们通常会将一整个训练集分为三个部分(比如mnist手写训练集)。一般分为:训练集(train_set),评估集(valid_set),测试集(test_set)这三个部分。这其实是为了保证训练效果而特意设置的。其中测试集很好理解,其实就是完全不参与训练的数据,仅仅用来观测测试效果的数据。而训练集和评估集则牵涉到下面的知识了。

    因为在实际的训练中,训练的结果对于训练集的拟合程度通常还是挺好的(初始条件敏感),但是对于训练集之外的数据的拟合程度通常就不那么令人满意了。因此我们通常并不会把所有的数据集都拿来训练,而是分出一部分来(这一部分不参加训练)对训练集生成的参数进行测试,相对客观的判断这些参数对训练集之外的数据的符合程度。这种思想就称为交叉验证(Cross Validation)

    from sklearn.model_selection import cross_val_score
    from sklearn.metrics import mean_absolute_error, make_scorer
    def log_transfer(func):
    def wrapper(y, yhat):
    result = func(np.log(y), np.nan_to_num(np.log(yhat)))
    return result
    return wrapper
    scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))
    [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
    [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.1s finished
    使用线性回归模型,对未处理标签的特征数据进行五折交叉验证(Error 1.36)

    print('AVG:', np.mean(scores))
    AVG: 1.3641908155886227
    使用线性回归模型,对处理过标签的特征数据进行五折交叉验证(Error 0.19)

    scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=1, cv = 5, scoring=make_scorer(mean_absolute_error))
    [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
    [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.1s finished
    print('AVG:', np.mean(scores))
    AVG: 0.19382863663604424
    scores = pd.DataFrame(scores.reshape(1,-1))
    scores.columns = ['cv' + str(x) for x in range(1, 6)]
    scores.index = ['MAE']
    scores

  • 相关阅读:
    清空数据库所有表数据
    sqlserver编号
    Inherits、CodeFile、CodeBehind的区别
    初识NuGet
    ASP.Net各个命名空间及作用
    SQL SERVER数据库性能优化之SQL语句篇
    Exercise 20: Functions And Files
    Exercise 19: Functions And Variables
    Exercise 18: Names, Variables, Code, Functions
    Exercise 17: More Files
  • 原文地址:https://www.cnblogs.com/david750/p/12616360.html
Copyright © 2011-2022 走看看