算法原理
在计算文本的相似性时,经常会用到编辑距离。编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。通常来说,编辑距离越小,两个文本的相似性越大。这里的编辑操作主要包括三种:
- 插入:将一个字符插入某个字符串;
- 删除:将字符串中的某个字符删除;
- 替换:将字符串中的某个字符替换为另外一个字符。
下面通过示例来看一下。
将字符串batyu变为beauty,编辑距离是多少呢?这需要经过如下步骤:
-
1、batyu变为beatyu(插入字符e)
-
2、beatyu变为beaty(删除字符u)
-
3、beaty变为beauty(插入字符u)
所以编辑距离为3。
那么,如何用Python计算编辑距离呢?我们可以从较为简单的情况进行分析。
当两个字符串都为空串,那么编辑距离为0;
当其中一个字符串为空串时,那么编辑距离为另一个非空字符串的长度;
当两个字符串均为非空时(长度分别为 i 和 j ),取以下三种情况最小值即可:
- 1、长度分别为 i-1 和 j 的字符串的编辑距离已知,那么加1即可;
- 2、长度分别为 i 和 j-1 的字符串的编辑距离已知,那么加1即可;
- 3、长度分别为 i-1 和 j-1 的字符串的编辑距离已知,此时考虑两种情况,若第i个字符和第j个字符不同,那么加1即可;如果相同,则不需要加1。
很明显,上述算法的思想即为动态规划
。
代码实现:
def min_edit_distance(a, b):
dp = [[0 for i in range(len(b) + 1)] for j in range(len(a) + 1)]
for i in range(len(a) + 1):
dp[i][0] = i
for j in range(len(b) + 1):
dp[0][j] = j
for i in range(1, len(a) + 1):
for j in range(1, len(b) + 1):
if a[i - 1] == b[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1)
# print(dp[-1][-1])
return dp[-1][-1]
if __name__ == "__main__":
A = input("输入字符串1:")
B = input("输入字符串2:")
print(min_edit_distance(A,B))