zoukankan      html  css  js  c++  java
  • golang中container/heap包源码分析

    学习golang难免需要分析源码包中一些实现,下面就来说说container/heap包的源码

    heap的实现使用到了小根堆,下面先对堆做个简单说明

    1. 堆概念  

      堆是一种经过排序的完全二叉树,其中任一非终端节点的数据值均不大于(或不小于)其左孩子和右孩子节点的值。
      最大堆和最小堆是二叉堆的两种形式。
      最大堆:根结点的键值是所有堆结点键值中最大者。
      最小堆:根结点的键值是所有堆结点键值中最小者。

    2. heap

     树的最小元素在根部,为index 0.

     heap包对任意实现了heap接口的类型提供堆操作。

     heap是常用的实现优先队列的方法。要创建一个优先队列,实现一个具有使用(负的)优先级作为比较的依据的Less方法的Heap接口,如此一来可用Push添加项目而用Pop取出队列最高优先级的项目。

    // Any type that implements heap.Interface may be used as a
    // min-heap with the following invariants (established after
    // Init has been called or if the data is empty or sorted):
    //
    //    !h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len()
    //
    // Note that Push and Pop in this interface are for package heap's
    // implementation to call. To add and remove things from the heap,
    // use heap.Push and heap.Pop.
    type Interface interface {
        sort.Interface
        Push(x interface{}) // add x as element Len()
        Pop() interface{}   // remove and return element Len() - 1.
    }
    // A type, typically a collection, that satisfies sort.Interface can be
    // sorted by the routines in this package. The methods require that the
    // elements of the collection be enumerated by an integer index.
    type Interface interface {
        // Len is the number of elements in the collection.
        Len() int
        // Less reports whether the element with
        // index i should sort before the element with index j.
        Less(i, j int) bool
        // Swap swaps the elements with indexes i and j.
        Swap(i, j int)
    }

    根据上面interface的定义,可以看出这个堆结构继承自sort.Interface, 而sort.Interface,需要实现三个方法:Len(), Less() , Swap() 。

    同事还需要实现堆接口定义的两个方法:Push(x interface{})   /  Pop() interface{}, 所以我们要想使用heap定义一个堆, 只需要定义实现了这五个方法结构就可以了。

    任何实现了本接口的类型都可以用于构建最小堆。最小堆可以通过heap.Init建立,数据是递增顺序或者空的话也是最小堆。最小堆的约束条件是:

     !h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len()

    注意接口的Push和Pop方法是供heap包调用的,请使用heap.Push和heap.Pop来向一个堆添加或者删除元素。

    以下是heap导出的方法:

    func Fix(h Interface, i int)            //在修改第i个元素后,调用本函数修复堆,比删除第i个元素后插入新元素更有效率。复杂度O(log(n)),其中n等于h.Len()。
    func Init(h Interface)               //初始化一个堆。一个堆在使用任何堆操作之前应先初始化。Init函数对于堆的约束性是幂等的(多次执行无意义),并可能在任何时候堆的约束性被破坏时被调用。本函数复杂度为O(n),其中n等于h.Len()。
    func Pop(h Interface) interface{}         //删除并返回堆h中的最小元素(不影响约束性)。复杂度O(log(n)),其中n等于h.Len()。该函数等价于Remove(h, 0)。
    func Push(h Interface, x interface{})      //向堆h中插入元素x,并保持堆的约束性。复杂度O(log(n)),其中n等于h.Len()。
    func Remove(h Interface, i int) interface{}  //删除堆中的第i个元素,并保持堆的约束性。复杂度O(log(n)),其中n等于h.Len()。

    实例:

    1. 包含int的最小堆

    // This example demonstrates an integer heap built using the heap interface.
    package heap_test
    
    import (
        "container/heap"
        "fmt"
    )
    
    // An IntHeap is a min-heap of ints.
    type IntHeap []int
    
    func (h IntHeap) Len() int           { return len(h) }
    func (h IntHeap) Less(i, j int) bool { return h[i] < h[j] }
    func (h IntHeap) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
    
    func (h *IntHeap) Push(x interface{}) {
        // Push and Pop use pointer receivers because they modify the slice's length,
        // not just its contents.
        *h = append(*h, x.(int))
    }
    
    func (h *IntHeap) Pop() interface{} {
        old := *h
        n := len(old)
        x := old[n-1]
        *h = old[0 : n-1]
        return x
    }
    
    // This example inserts several ints into an IntHeap, checks the minimum,
    // and removes them in order of priority.
    func Example_intHeap() {
        h := &IntHeap{2, 1, 5}
        heap.Init(h)
        heap.Push(h, 3)
        fmt.Printf("minimum: %d
    ", (*h)[0])
        for h.Len() > 0 {
            fmt.Printf("%d ", heap.Pop(h))
        }
        // Output:
        // minimum: 1
        // 1 2 3 5
    }

    2. 用heap创建一个优先级队列

    // This example demonstrates a priority queue built using the heap interface.
    package heap_test
    
    import (
        "container/heap"
        "fmt"
    )
    
    // An Item is something we manage in a priority queue.
    type Item struct {
        value    string // The value of the item; arbitrary.
        priority int    // The priority of the item in the queue.
        // The index is needed by update and is maintained by the heap.Interface methods.
        index int // The index of the item in the heap.
    }
    
    // A PriorityQueue implements heap.Interface and holds Items.
    type PriorityQueue []*Item
    
    func (pq PriorityQueue) Len() int { return len(pq) }
    
    func (pq PriorityQueue) Less(i, j int) bool {
        // We want Pop to give us the highest, not lowest, priority so we use greater than here.
        return pq[i].priority > pq[j].priority
    }
    
    func (pq PriorityQueue) Swap(i, j int) {
        pq[i], pq[j] = pq[j], pq[i]
        pq[i].index = i
        pq[j].index = j
    }
    
    func (pq *PriorityQueue) Push(x interface{}) {
        n := len(*pq)
        item := x.(*Item)
        item.index = n
        *pq = append(*pq, item)
    }
    
    func (pq *PriorityQueue) Pop() interface{} {
        old := *pq
        n := len(old)
        item := old[n-1]
        item.index = -1 // for safety
        *pq = old[0 : n-1]
        return item
    }
    
    // update modifies the priority and value of an Item in the queue.
    func (pq *PriorityQueue) update(item *Item, value string, priority int) {
        item.value = value
        item.priority = priority
        heap.Fix(pq, item.index)
    }
    
    // This example creates a PriorityQueue with some items, adds and manipulates an item,
    // and then removes the items in priority order.
    func Example_priorityQueue() {
        // Some items and their priorities.
        items := map[string]int{
            "banana": 3, "apple": 2, "pear": 4,
        }
    
        // Create a priority queue, put the items in it, and
        // establish the priority queue (heap) invariants.
        pq := make(PriorityQueue, len(items))
        i := 0
        for value, priority := range items {
            pq[i] = &Item{
                value:    value,
                priority: priority,
                index:    i,
            }
            i++
        }
        heap.Init(&pq)
    
        // Insert a new item and then modify its priority.
        item := &Item{
            value:    "orange",
            priority: 1,
        }
        heap.Push(&pq, item)
        pq.update(item, item.value, 5)
    
        // Take the items out; they arrive in decreasing priority order.
        for pq.Len() > 0 {
            item := heap.Pop(&pq).(*Item)
            fmt.Printf("%.2d:%s ", item.priority, item.value)
        }
        // Output:
        // 05:orange 04:pear 03:banana 02:apple
    }

    说明:测试源码都是golang包里面提供的, 有兴趣可以直接去查阅下golang源码

  • 相关阅读:
    根据人脸关键点实现平面三角剖分和最近邻搜索 ( KNN, K=1 ), opencv3.4.2, C++
    KDTree  C++实现
    python 保留小数
    Clion提示:Single-argument constructors must be marked explicitly to avoid unintentional implicit conversions 解法办法
    二叉搜索树的C++ 实现
    排列组合之组合问题 网易深度学习工程师面试题 C++ 使用10方法
    OS X 安装命令行看图工具 chafa 以及其依赖libtool
    leetcode704 C++ 72ms 二分查找
    Deep Interest Network for Click-Through Rate Prediction
    归并排序
  • 原文地址:https://www.cnblogs.com/davygeek/p/5916230.html
Copyright © 2011-2022 走看看