zoukankan      html  css  js  c++  java
  • 卡尔曼滤波应用

    最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

     

    现设线性时变系统的离散状态方程和观测方程为:

    X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)

    Y(k) = H(k)·X(k)+N(k)

    其中

    X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

    F(k,k-1)为状态转移矩阵

    U(k)为k时刻动态噪声

    T(k,k-1)为系统控制矩阵

    H(k)为k时刻观测矩阵

    N(k)为k时刻观测噪声

    则卡尔曼滤波的算法流程为:

    • 预估计X(k)^= F(k,k-1)·X(k-1) 
    • 计算预估计协方差矩阵 C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)' 
    • 计算卡尔曼增益矩阵 K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1) R(k) = N(k)×N(k)' 
    • 更新估计 X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^] 
    • 计算更新后估计协防差矩阵 C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)' 
    • X(k+1) = X(k)~ C(k+1) = C(k)~ 重复以上步骤

    卡尔曼滤波C程序:

     1   #include "stdlib.h"
     2   #include "rinv.c"
     3   int kalman(n,m,k,f,q,r,h,y,x,p,g)
     4   int n,m,k;
     5   double f[],q[],r[],h[],y[],x[],p[],g[];
     6   { int i,j,kk,ii,l,jj,js;
     7     double *e,*a,*b;
     8     e=malloc(m*m*sizeof(double));
     9     l=m;
    10     if (l<n) l=n;
    11     a=malloc(l*l*sizeof(double));
    12     b=malloc(l*l*sizeof(double));
    13     for (i=0; i<=n-1; i++)
    14       for (j=0; j<=n-1; j++)
    15         { ii=i*l+j; a[ii]=0.0;
    16           for (kk=0; kk<=n-1; kk++)
    17             a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];
    18         }
    19     for (i=0; i<=n-1; i++)
    20       for (j=0; j<=n-1; j++)
    21         { ii=i*n+j; p[ii]=q[ii];
    22           for (kk=0; kk<=n-1; kk++)
    23             p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];
    24         }
    25     for (ii=2; ii<=k; ii++)
    26       { for (i=0; i<=n-1; i++)
    27         for (j=0; j<=m-1; j++)
    28           { jj=i*l+j; a[jj]=0.0;
    29             for (kk=0; kk<=n-1; kk++)
    30               a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];
    31           }
    32         for (i=0; i<=m-1; i++)
    33         for (j=0; j<=m-1; j++)
    34           { jj=i*m+j; e[jj]=r[jj];
    35             for (kk=0; kk<=n-1; kk++)
    36               e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];
    37           }
    38         js=rinv(e,m);
    39         if (js==0)
    40           { free(e); free(a); free(b); return(js);}
    41         for (i=0; i<=n-1; i++)
    42         for (j=0; j<=m-1; j++)
    43           { jj=i*m+j; g[jj]=0.0;
    44             for (kk=0; kk<=m-1; kk++)
    45               g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];
    46           }
    47         for (i=0; i<=n-1; i++)
    48           { jj=(ii-1)*n+i; x[jj]=0.0;
    49             for (j=0; j<=n-1; j++)
    50               x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];
    51           }
    52         for (i=0; i<=m-1; i++)
    53           { jj=i*l; b[jj]=y[(ii-1)*m+i];
    54             for (j=0; j<=n-1; j++)
    55               b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];
    56           }
    57         for (i=0; i<=n-1; i++)
    58           { jj=(ii-1)*n+i;
    59             for (j=0; j<=m-1; j++)
    60               x[jj]=x[jj]+g[i*m+j]*b[j*l];
    61           }
    62         if (ii<k)
    63           { for (i=0; i<=n-1; i++)
    64             for (j=0; j<=n-1; j++)
    65               { jj=i*l+j; a[jj]=0.0;
    66                 for (kk=0; kk<=m-1; kk++)
    67                   a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];
    68                 if (i==j) a[jj]=1.0+a[jj];
    69               }
    70             for (i=0; i<=n-1; i++)
    71             for (j=0; j<=n-1; j++)
    72               { jj=i*l+j; b[jj]=0.0;
    73                 for (kk=0; kk<=n-1; kk++)
    74                   b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];
    75               }
    76             for (i=0; i<=n-1; i++)
    77             for (j=0; j<=n-1; j++)
    78               { jj=i*l+j; a[jj]=0.0;
    79                 for (kk=0; kk<=n-1; kk++)
    80                   a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];
    81               }
    82             for (i=0; i<=n-1; i++)
    83             for (j=0; j<=n-1; j++)
    84               { jj=i*n+j; p[jj]=q[jj];
    85                 for (kk=0; kk<=n-1; kk++)
    86                   p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];
    87               }
    88           }
    89       }
    90     free(e); free(a); free(b);
    91     return(js);
    92   }

     C++实现程序如下

    ============================kalman.h================================
    
    // kalman.h: interface for the kalman class.
    //
    //////////////////////////////////////////////////////////////////////
    
    #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
    #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_
    
    #if _MSC_VER > 1000
    #pragma once
    #endif // _MSC_VER > 1000
    
    #include <math.h>
    #include "cv.h"
    
    class kalman  
    {
    public:
     void init_kalman(int x,int xv,int y,int yv);
     CvKalman* cvkalman;
     CvMat* state; 
     CvMat* process_noise;
     CvMat* measurement;
     const CvMat* prediction;
     CvPoint2D32f get_predict(float x, float y);
     kalman(int x=0,int xv=0,int y=0,int yv=0);
     //virtual ~kalman();
    
    };
    
    #endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
    ============================kalman.cpp================================
    
    #include "kalman.h"
    #include <stdio.h>
    
    CvRandState rng;
    const double T = 0.1;
    kalman::kalman(int x,int xv,int y,int yv)
    {     
        cvkalman = cvCreateKalman( 4, 4, 0 );
        state = cvCreateMat( 4, 1, CV_32FC1 );
        process_noise = cvCreateMat( 4, 1, CV_32FC1 );
        measurement = cvCreateMat( 4, 1, CV_32FC1 );
        int code = -1;
        
        
         const float A[] = { 
       1, T, 0, 0,
       0, 1, 0, 0,
       0, 0, 1, T,
       0, 0, 0, 1
      };
         
         const float H[] = { 
        1, 0, 0, 0,
        0, 0, 0, 0,
       0, 0, 1, 0,
       0, 0, 0, 0
      };
           
         const float P[] = {
        pow(320,2), pow(320,2)/T, 0, 0,
       pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,
       0, 0, pow(240,2), pow(240,2)/T,
       0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)
        };
    
         const float Q[] = {
       pow(T,3)/3, pow(T,2)/2, 0, 0,
       pow(T,2)/2, T, 0, 0,
       0, 0, pow(T,3)/3, pow(T,2)/2,
       0, 0, pow(T,2)/2, T
       };
       
         const float R[] = {
       1, 0, 0, 0,
       0, 0, 0, 0,
       0, 0, 1, 0,
       0, 0, 0, 0
       };
       
        
        cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );
    
        cvZero( measurement );
        
        cvRandSetRange( &rng, 0, 0.1, 0 );
        rng.disttype = CV_RAND_NORMAL;
    
        cvRand( &rng, state );
    
        memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));
        memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));
        memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));
        memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));
        memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));
        //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );    
        //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));
     //cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );
    
        
        state->data.fl[0]=x;
        state->data.fl[1]=xv;
        state->data.fl[2]=y;
        state->data.fl[3]=yv;
        cvkalman->state_post->data.fl[0]=x;
        cvkalman->state_post->data.fl[1]=xv;
        cvkalman->state_post->data.fl[2]=y;
        cvkalman->state_post->data.fl[3]=yv;
    
     cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 );
        cvRand( &rng, process_noise );
    
    
        }
    
         
    CvPoint2D32f kalman::get_predict(float x, float y){
        
    
        
        state->data.fl[0]=x;
        state->data.fl[2]=y;
    
        
        
        
        cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );
        cvRand( &rng, measurement );
        
         
        cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );
        
        
        cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, measurement, measurement );
        
        
        
        cvKalmanCorrect( cvkalman, measurement );
        float measured_value_x = measurement->data.fl[0];
        float measured_value_y = measurement->data.fl[2];
    
        
     const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );
        float predict_value_x = prediction->data.fl[0];
        float predict_value_y = prediction->data.fl[2];
    
        return(cvPoint2D32f(predict_value_x,predict_value_y));
    }
    
    void kalman::init_kalman(int x,int xv,int y,int yv)
    {
     state->data.fl[0]=x;
        state->data.fl[1]=xv;
        state->data.fl[2]=y;
        state->data.fl[3]=yv;
        cvkalman->state_post->data.fl[0]=x;
        cvkalman->state_post->data.fl[1]=xv;
        cvkalman->state_post->data.fl[2]=y;
        cvkalman->state_post->data.fl[3]=yv;
    }

    注:卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载http://www.cs.unc.edu/~welch/media/pdf/Kalman1960.pdf

    还有个帖子,http://dzone.com/snippets/simple-kalman-filter-c,外国人写的简易卡曼滤波的C程序,值得参考。

  • 相关阅读:
    jQuery .css("width")和.width()的区别
    用jquery写一个滑动TAB 例子
    D
    4 Values whose Sum is 0
    Hibernate学习之hql 与sql
    BigDecimal进行精确运算
    Date类与SimpleDateFormat类中parse()方法和format()方法
    单例模式下的懒汉和饿汉模式
    Java中Date类型详解
    Spring @Column的注解详解
  • 原文地址:https://www.cnblogs.com/dawnpower/p/3539012.html
Copyright © 2011-2022 走看看