zoukankan      html  css  js  c++  java
  • 混淆矩阵

    混淆矩阵

    混淆矩阵(Confusion Matrix)是评估模型结果的指标,属于模型评估的一部分,混淆矩阵如下图所示。

    • TP(True Positive): 真实为0,预测也为0

    • FN(False Negative): 真实为0,预测为1

    • FP(False Positive): 真实为1,预测为0

    • TN(True Negative): 真实为0,预测也为0

    1.准确率 Accuracy

    准确率:所有预测正确的样本占所有样本的比例。

    egin{align} otag accuracy = frac{TP + TN}{TP + FN + FP + TN} end{align}

    ## 2.精确率 Precision 精确率:预测结果为正例的样本中真实为正例的比例。

    egin{align} otag precision = frac{TP}{TP + FP} end{align}

    ## 3.灵敏度 Sensitivity 灵敏度:即召回率(Recall),真实为正例的样本中预测结果为正例的比例。

    egin{align} otag accuracy = frac{TP}{TP + FN} end{align}

    ## 4.特异度 Specificity 特异度:真实为假例的样本中预测结果为反例的结果。

    egin{align} otag accuracy = frac{TN}{FP + TN} end{align}

    ## 5.F1-score F1-score同时兼顾了分类模型的准确率和召回率,可以看作是模型准确率和召回率的一种加权平均。 F1-score的最大值是1,最小值是0。1代表模型输出结果好,0代表模型输出结果查。

    egin{align} otag F1 = frac{2cdot precisioncdot recall}{precision + recall} end{align}

    sklearn分类模型评估API

    	sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None)
    

    y_true:真实目标值
    y_pred:预测目标值
    labels:包含在报告中的可选标签索引列表
    target_names:与标签匹配的可选显示名称(相同顺序)
    return:每个分类的精确度,召回率,F1-score的文本摘要


    你总是这样轻言放弃的话,无论多久都只会原地踏步。 ——《哆啦A梦》

  • 相关阅读:
    使用Spring Cloud Gateway保护反应式微服务(二)
    使用Spring Cloud Gateway保护反应式微服务(一)
    浅谈Spring 5的响应式编程
    使用Spring Data JPA的Spring Boot
    在简单的JDBC程序中使用ORM工具
    Python爬虫
    数据库建模之概念模型、逻辑模型、物理模型
    机器学习(周志华)——学习笔记2
    HTTP——无状态协议理解
    Tomcat中文乱码问题
  • 原文地址:https://www.cnblogs.com/dblsha/p/10160508.html
Copyright © 2011-2022 走看看