zoukankan      html  css  js  c++  java
  • day11---异步IO数据库队列缓存

    一、RabbitMQ队列  

    RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。

    MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。

    http://www.cnblogs.com/wupeiqi/articles/5132791.html

    1.安装:

    a.官网:

          安装 http://www.rabbitmq.com/install-standalone-mac.html

    b.安装python rabbitMQ module 

    pip install pika
    or
    easy_install pika
    or
    源码
    https://pypi.python.org/pypi/pika

    2.实现最简单的队列通信

    a.示意图

    3.代码:

    a.send端

    复制代码
    #!/usr/bin/env python
    import pika
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(
                   'localhost'))
    channel = connection.channel()
     
    #声明queue
    channel.queue_declare(queue='hello')
     
    #n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
    channel.basic_publish(exchange='',
                          routing_key='hello',
                          body='Hello World!')
    print(" [x] Sent 'Hello World!'")
    connection.close()
    复制代码

    b.receive

    复制代码
    #!/usr/bin/env python
    # -*- conding:utf-8 -*-
    __Author__ = "YoungCheung"
    import pika
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(
                   'localhost'))
    channel = connection.channel()
     
     
    #You may ask why we declare the queue again ‒ we have already declared it in our previous code.
    # We could avoid that if we were sure that the queue already exists. For example if send.py program
    #was run before. But we're not yet sure which program to run first. In such cases it's a good
    # practice to repeat declaring the queue in both programs.
    channel.queue_declare(queue='hello')
     
    def callback(ch, method, properties, body):
        print(" [x] Received %r" % body)
     
    channel.basic_consume(callback,
                          queue='hello',
                          no_ack=True)
     
    print(' [*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()
    复制代码

    二、Work Queues

    1.示意图

    在这种模式下,RabbitMQ会默认把p发的消息依次分发给各个消费者(c),跟负载均衡差不

    2.代码

    a.消息提供者

    复制代码
    import pika
    connection = pika.BlockingConnection(pika.ConnectionParameters(
                   'localhost'))
    channel = connection.channel()
     
    #声明queue
    channel.queue_declare(queue='task_queue')
     
    #n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
    import sys
     
    message = ' '.join(sys.argv[1:]) or "Hello World!"
    channel.basic_publish(exchange='',
                          routing_key='task_queue',
                          body=message,
                          properties=pika.BasicProperties(
                          delivery_mode = 2, # make message persistent
                          ))
    print(" [x] Sent %r" % message)
    connection.close()
    复制代码

     b.消费者代码

    复制代码
    import pika,time
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(
                   'localhost'))
    channel = connection.channel()
     
     
     
    def callback(ch, method, properties, body):
        print(" [x] Received %r" % body)
        time.sleep(body.count(b'.'))
        print(" [x] Done")
        ch.basic_ack(delivery_tag = method.delivery_tag)
     
     
    channel.basic_consume(callback,
                          queue='task_queue',
                          )
     
    print(' [*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()
    复制代码

       此时,先启动消息生产者,然后再分别启动3个消费者,通过生产者多发送几条消息,会发现,几条消息会被依次分配到各个消费者身上。  

      Doing a task can take a few seconds. You may wonder what happens if one of the consumers starts a long task and dies with it only partly done. With our current code once RabbitMQ delivers message to the customer it immediately removes it from memory. In this case, if you kill a worker we will lose the message it was just processing. We'll also lose all the messages that were dispatched to this particular worker but were not yet handled.

      But we don't want to lose any tasks. If a worker dies, we'd like the task to be delivered to another worker.

      In order to make sure a message is never lost, RabbitMQ supports message acknowledgments. An ack(nowledgement) is sent back from the consumer to tell RabbitMQ that a particular message had been received, processed and that RabbitMQ is free to delete it.

      If a consumer dies (its channel is closed, connection is closed, or TCP connection is lost) without sending an ack, RabbitMQ will understand that a message wasn't processed fully and will re-queue it. If there are other consumers online at the same time, it will then quickly redeliver it to another consumer. That way you can be sure that no message is lost, even if the workers occasionally die.

      There aren't any message timeouts; RabbitMQ will redeliver the message when the consumer dies. It's fine even if processing a message takes a very, very long time.

      Message acknowledgments are turned on by default. In previous examples we explicitly turned them off via the no_ack=True flag. It's time to remove this flag and send a proper acknowledgment from the worker, once we're done with a task.

    复制代码
    def callback(ch, method, properties, body):
        print " [x] Received %r" % (body,)
        time.sleep( body.count('.') )
        print " [x] Done"
        ch.basic_ack(delivery_tag = method.delivery_tag)
     
    channel.basic_consume(callback,
                          queue='hello')
    复制代码

       Using this code we can be sure that even if you kill a worker using CTRL+C while it was processing a message, nothing will be lost. Soon after the worker dies all unacknowledged messages will be redelivered

      三、消息持久化

       We have learned how to make sure that even if the consumer dies, the task isn't lost(by default, if wanna disable  use no_ack=True). But our tasks will still be lost if RabbitMQ server stops.

      When RabbitMQ quits or crashes it will forget the queues and messages unless you tell it not to. Two things are required to make sure that messages aren't lost: we need to mark both the queue and messages as durable.

      First, we need to make sure that RabbitMQ will never lose our queue. In order to do so, we need to declare it as durable:

    channel.queue_declare(queue='hello', durable=True)

       This queue_declare change needs to be applied to both the producer and consumer code.

      At that point we're sure that the task_queue queue won't be lost even if RabbitMQ restarts. Now we need to mark our messages as persistent - by supplying a delivery_mode property with a value 2.

    channel.basic_publish(exchange='',
                          routing_key="task_queue",
                          body=message,
                          properties=pika.BasicProperties(
                             delivery_mode = 2, # make message persistent
                          ))

     四、消息公布平台

       如果Rabbit只管按顺序把消息发到各个消费者身上,不考虑消费者负载的话,很可能出现,一个机器配置不高的消费者那里堆积了很多消息处理不完,同时配置高的消费者却一直很轻松。为解决此问题,可以在各个消费者端,配置perfetch=1,意思就是告诉RabbitMQ在我这个消费者当前消息还没处理完的时候就不要再给我发新消息了。

     1.示意图

    channel.basic_qos(prefetch_count=1)

    2.带消息持久化+公平分发的完整代码

     1.生产者端

    复制代码
    #!/usr/bin/env python
    import pika
    import sys
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
     
    channel.queue_declare(queue='task_queue', durable=True)
     
    message = ' '.join(sys.argv[1:]) or "Hello World!"
    channel.basic_publish(exchange='',
                          routing_key='task_queue',
                          body=message,
                          properties=pika.BasicProperties(
                             delivery_mode = 2, # make message persistent
                          ))
    print(" [x] Sent %r" % message)
    connection.close()
    复制代码

    2.消费者 

    复制代码
    #!/usr/bin/env python
    import pika
    import time
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
     
    channel.queue_declare(queue='task_queue', durable=True)
    print(' [*] Waiting for messages. To exit press CTRL+C')
     
    def callback(ch, method, properties, body):
        print(" [x] Received %r" % body)
        time.sleep(body.count(b'.'))
        print(" [x] Done")
        ch.basic_ack(delivery_tag = method.delivery_tag)
     
    channel.basic_qos(prefetch_count=1)
    channel.basic_consume(callback,
                          queue='task_queue')
     
    channel.start_consuming()
    复制代码

     五、PublishSubscribe(消息发布订阅) 

      之前的例子都基本都是1对1的消息发送和接收,即消息只能发送到指定的queue里,但有些时候你想让你的消息被所有的Queue收到,类似广播的效果,这时候就要用到exchange了,

      An exchange is a very simple thing. On one side it receives messages from producers and the other side it pushes them to queues. The exchange must know exactly what to do with a message it receives. Should it be appended to a particular queue? Should it be appended to many queues? Or should it get discarded. The rules for that are defined by the exchange type.

    Exchange在定义的时候是有类型的,以决定到底是哪些Queue符合条件,可以接收消息

    fanout: 所有bind到此exchange的queue都可以接收消息
    direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息
    topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息
       表达式符号说明:#代表一个或多个字符,*代表任何字符
          例:#.a会匹配a.a,aa.a,aaa.a等
              *.a会匹配a.a,b.a,c.a等
         注:使用RoutingKey为#,Exchange Type为topic的时候相当于使用fanout 

    headers: 通过headers 来决定把消息发给哪些queue

    1.消息publisher

    复制代码
    import pika
    import sys
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
     
    channel.exchange_declare(exchange='logs',
                             type='fanout')
     
    message = ' '.join(sys.argv[1:]) or "info: Hello World!"
    channel.basic_publish(exchange='logs',
                          routing_key='',
                          body=message)
    print(" [x] Sent %r" % message)
    connection.close()
    复制代码

    2. 消息subscriber

    复制代码
    import pika
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
     
    channel.exchange_declare(exchange='logs',
                             type='fanout')
     
    result = channel.queue_declare(exclusive=True) #不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除
    queue_name = result.method.queue
     
    channel.queue_bind(exchange='logs',
                       queue=queue_name)
     
    print(' [*] Waiting for logs. To exit press CTRL+C')
     
    def callback(ch, method, properties, body):
        print(" [x] %r" % body)
     
    channel.basic_consume(callback,
                          queue=queue_name,
                          no_ack=True)
     
    channel.start_consuming()
    复制代码

    六、有选择的接收消息(exchange type=direct) 

       RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

    1.publisher

    复制代码
    import pika
    import sys
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
     
    channel.exchange_declare(exchange='direct_logs',
                             type='direct')
     
    severity = sys.argv[1] if len(sys.argv) > 1 else 'info'
    message = ' '.join(sys.argv[2:]) or 'Hello World!'
    channel.basic_publish(exchange='direct_logs',
                          routing_key=severity,
                          body=message)
    print(" [x] Sent %r:%r" % (severity, message))
    connection.close()
    复制代码

     2.subscriber 

    复制代码
    import pika
    import sys
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
     
    channel.exchange_declare(exchange='direct_logs',
                             type='direct')
     
    result = channel.queue_declare(exclusive=True)
    queue_name = result.method.queue
     
    severities = sys.argv[1:]
    if not severities:
        sys.stderr.write("Usage: %s [info] [warning] [error]
    " % sys.argv[0])
        sys.exit(1)
     
    for severity in severities:
        channel.queue_bind(exchange='direct_logs',
                           queue=queue_name,
                           routing_key=severity)
     
    print(' [*] Waiting for logs. To exit press CTRL+C')
     
    def callback(ch, method, properties, body):
        print(" [x] %r:%r" % (method.routing_key, body))
     
    channel.basic_consume(callback,
                          queue=queue_name,
                          no_ack=True)
     
    channel.start_consuming()
    复制代码

     七、更细致的消息过滤

       Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria.

      In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...).

      That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'.

    Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria.

    In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...).

    That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'.

     

    1.publisher

    复制代码
    import pika
    import sys
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
     
    channel.exchange_declare(exchange='topic_logs',
                             type='topic')
     
    routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
    message = ' '.join(sys.argv[2:]) or 'Hello World!'
    channel.basic_publish(exchange='topic_logs',
                          routing_key=routing_key,
                          body=message)
    print(" [x] Sent %r:%r" % (routing_key, message))
    connection.close()
    复制代码

    2.subscriber

    复制代码
    import pika
    import sys
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
     
    channel.exchange_declare(exchange='topic_logs',
                             type='topic')
     
    result = channel.queue_declare(exclusive=True)
    queue_name = result.method.queue
     
    binding_keys = sys.argv[1:]
    if not binding_keys:
        sys.stderr.write("Usage: %s [binding_key]...
    " % sys.argv[0])
        sys.exit(1)
     
    for binding_key in binding_keys:
        channel.queue_bind(exchange='topic_logs',
                           queue=queue_name,
                           routing_key=binding_key)
     
    print(' [*] Waiting for logs. To exit press CTRL+C')
     
    def callback(ch, method, properties, body):
        print(" [x] %r:%r" % (method.routing_key, body))
     
    channel.basic_consume(callback,
                          queue=queue_name,
                          no_ack=True)
     
    channel.start_consuming()
    复制代码

     To receive all the logs run:

    python receive_logs_topic.py "#"
    

    To receive all logs from the facility "kern":

    python receive_logs_topic.py "kern.*"
    

    Or if you want to hear only about "critical" logs:

    python receive_logs_topic.py "*.critical"
    

    You can create multiple bindings:

    python receive_logs_topic.py "kern.*" "*.critical"
    

    And to emit a log with a routing key "kern.critical" type:

    python emit_log_topic.py "kern.critical" "A critical kernel error"

    八、Remote procedure call (RPC)

    To illustrate how an RPC service could be used we're going to create a simple client class. It's going to expose a method named call which sends an RPC request and blocks until the answer is received:

    fibonacci_rpc = FibonacciRpcClient()
    result = fibonacci_rpc.call(4)
    print("fib(4) is %r" % result)

      

    1.RPC server

    复制代码
    import pika
    import time
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
     
    channel = connection.channel()
     
    channel.queue_declare(queue='rpc_queue')
     
    def fib(n):
        if n == 0:
            return 0
        elif n == 1:
            return 1
        else:
            return fib(n-1) + fib(n-2)
     
    def on_request(ch, method, props, body):
        n = int(body)
     
        print(" [.] fib(%s)" % n)
        response = fib(n)
     
        ch.basic_publish(exchange='',
                         routing_key=props.reply_to,
                         properties=pika.BasicProperties(correlation_id = 
                                                             props.correlation_id),
                         body=str(response))
        ch.basic_ack(delivery_tag = method.delivery_tag)
     
    channel.basic_qos(prefetch_count=1)
    channel.basic_consume(on_request, queue='rpc_queue')
     
    print(" [x] Awaiting RPC requests")
    channel.start_consuming()
    复制代码

    2.RPC client

    复制代码
    import pika
    import uuid
     
    class FibonacciRpcClient(object):
        def __init__(self):
            self.connection = pika.BlockingConnection(pika.ConnectionParameters(
                    host='localhost'))
     
            self.channel = self.connection.channel()
     
            result = self.channel.queue_declare(exclusive=True)
            self.callback_queue = result.method.queue
     
            self.channel.basic_consume(self.on_response, no_ack=True,
                                       queue=self.callback_queue)
     
        def on_response(self, ch, method, props, body):
            if self.corr_id == props.correlation_id:
                self.response = body
     
        def call(self, n):
            self.response = None
            self.corr_id = str(uuid.uuid4())
            self.channel.basic_publish(exchange='',
                                       routing_key='rpc_queue',
                                       properties=pika.BasicProperties(
                                             reply_to = self.callback_queue,
                                             correlation_id = self.corr_id,
                                             ),
                                       body=str(n))
            while self.response is None:
                self.connection.process_data_events()
            return int(self.response)
     
    fibonacci_rpc = FibonacciRpcClient()
     
    print(" [x] Requesting fib(30)")
    response = fibonacci_rpc.call(30)
    print(" [.] Got %r" % response)
  • 相关阅读:
    Atcoder Grand Contest 038 F
    洛谷 P5502
    Codeforces 1010F
    洛谷 P4621
    洛谷 P5518
    Oracle-切换当用用户的模式
    Oracle-DBV数据文件校验工具
    【转载】Oracle-通过增量备份前滚的反手解决物理备库归档缺失,损坏,gap问题
    Oracle-对比SAA与STA
    Oracle-SAA
  • 原文地址:https://www.cnblogs.com/dcc001/p/5983655.html
Copyright © 2011-2022 走看看