zoukankan      html  css  js  c++  java
  • 后缀数组笔记

    倍增求后缀数组

     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<cmath>
     5 using namespace std;
     6 int rank[10001],sa[10001],height[10001],buc[10001],x[10001],y[10001],n,len;
     7 char st[10001]; 
     8 bool cmp(int *s,int n,int m,int x){
     9     return s[n]==s[m]&&s[n+x]==s[m+x];
    10 }
    11 void initsa(int n,int m){
    12     memset(buc,0,sizeof(buc));
    13     for(int i=0;i<n;i++)buc[x[i]=st[i]]++;
    14     for(int i=1;i<m;i++)buc[i]+=buc[i-1];
    15     for(int i=len-1;i>=0;i--)sa[--buc[x[i]]]=i;
    16     for(int j=1,p=1;p<n;j*=2,m=p){
    17         p=0;
    18         for(int i=n-j;i<n;i++)y[p++]=i;
    19         for(int i=0;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j;
    20         memset(buc,0,sizeof(buc));
    21         for(int i=0;i<n;i++)buc[x[y[i]]]++;
    22         for(int i=1;i<m;i++)buc[i]+=buc[i-1];
    23         for(int i=n-1;i>=0;i--)sa[--buc[x[y[i]]]]=y[i];
    24         swap(x,y);
    25         int i;
    26         for(p=1,x[sa[0]]=0,i=1;i<n;i++){
    27             x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
    28         }
    29     }
    30 }
    31 void initra(){
    32     for(int i=0;i<len;i++)rank[sa[i]]=i;
    33 }
    34 void initheight(){
    35     int j,k=0;
    36     for(int i=0;i<len;i++){
    37         if(k)k--;
    38         j=sa[rank[i]-1];
    39         while(st[i+k]==st[j+k])k++;
    40         height[rank[i]]=k;
    41     }
    42 }
    43 int main(){
    44     scanf("%s",st);
    45     len=(int)strlen(st);
    46     initsa(len,128);
    47     initra();
    48     initheight();
    49     for(int i=0;i<len;i++){
    50         printf("%d",rank[i]);
    51     }
    52     printf("
    ");
    53     for(int i=0;i<len;i++){
    54         printf("%d",sa[i]);
    55     }
    56     printf("
    ");
    57     for(int i=0;i<len;i++){
    58         printf("%d",height[i]);
    59     }
    60     return 0;
    61 }
  • 相关阅读:
    814. Binary Tree Pruning
    50. Pow(x, n)
    698. Partition to K Equal Sum Subsets
    416. Partition Equal Subset Sum
    150. Evaluate Reverse Polish Notation
    322. Coin Change
    Vulnerable Kerbals CodeForces
    D. Domino for Young
    C. Long Beautiful Integer
    B. Modulo Equality
  • 原文地址:https://www.cnblogs.com/dcdcbigbig/p/8952219.html
Copyright © 2011-2022 走看看