zoukankan      html  css  js  c++  java
  • 2020系统综合实践 第7次实践作业

    通过pip安装opencv库

    安装依赖

    pip3 install --upgrade setuptools
    pip3 install numpy Matplotlib
    
    sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
    sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
    sudo apt-get install libxvidcore-dev libx264-dev
    sudo apt-get install libgtk2.0-dev libgtk-3-dev
    sudo apt-get install libatlas-base-dev
    sudo apt install libqt4-test
    

    安装opencv

    pip3 install opencv-python
    

    使用opencv和python控制树莓派的摄像头

    示例代码

    # import the necessary packages
    from picamera.array import PiRGBArray
    from picamera import PiCamera
    import time
    import cv2
     
    # initialize the camera and grab a reference to the raw camera capture
    camera = PiCamera()
    rawCapture = PiRGBArray(camera)
     
    # allow the camera to warmup
    time.sleep(2) 
     
    # grab an image from the camera
    camera.capture(rawCapture, format="bgr")
    image = rawCapture.array
     
    # display the image on screen and wait for a keypress
    cv2.imshow("Image", image)
    cv2.waitKey(0)
    

    利用树莓派的摄像头实现人脸识别

    安装依赖库dlib,face_recognition

    pip install dlib
    pip install face_recognition
    

    • facerec_on_raspberry_pi.py
    # This is a demo of running face recognition on a Raspberry Pi.
    # This program will print out the names of anyone it recognizes to the console.
    # To run this, you need a Raspberry Pi 2 (or greater) with face_recognition and
    # the picamera[array] module installed.
    # You can follow this installation instructions to get your RPi set up:
    # https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65
    
    import face_recognition
    import picamera
    import numpy as np
    
    # Get a reference to the Raspberry Pi camera.
    # If this fails, make sure you have a camera connected to the RPi and that you
    # enabled your camera in raspi-config and rebooted first.
    camera = picamera.PiCamera()
    camera.resolution = (320, 240)
    output = np.empty((240, 320, 3), dtype=np.uint8)
    
    # Load a sample picture and learn how to recognize it.
    print("Loading known face image(s)")
    obama_image = face_recognition.load_image_file("obama_small.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    
    while True:
    
        print("Capturing image.")
        # Grab a single frame of video from the RPi camera as a numpy array
        camera.capture(output, format="rgb")
    
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(output)
    
        print("Found {} faces in image.".format(len(face_locations)))
        face_encodings = face_recognition.face_encodings(output, face_locations)
    
        # Loop over each face found in the frame to see if it's someone we know.
        for face_encoding in face_encodings:
    
            # See if the face is a match for the known face(s)
            match = face_recognition.compare_faces([obama_face_encoding], face_encoding)
            name = "<Unknown Person>"
    
            if match[0]:
                name = "Ma Huateng"
            print("I see someone named {}!".format(name))
    

    测试一张马哥的照片,成功识别。

    在测试一张

    • facerec_from_webcam_faster.py
    import face_recognition
    import cv2
    import numpy as np
    
    # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
    # other example, but it includes some basic performance tweaks to make things run a lot faster:
    #   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
    #   2. Only detect faces in every other frame of video.
    
    # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
    # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
    # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
    
    # Get a reference to webcam #0 (the default one)
    video_capture = cv2.VideoCapture(0)
    
    # Load a sample picture and learn how to recognize it.
    Trump_image = face_recognition.load_image_file("Trump.jpg")
    Trump_face_encoding = face_recognition.face_encodings(Trump_image)[0]
    
    # Load a second sample picture and learn how to recognize it.
    Kim_Jong_Eunimage = face_recognition.load_image_file("Kim_Jong_Eun.jpg")
    Kim_Jong_Eunface_encoding = face_recognition.face_encodings(Kim_Jong_Eunimage)[0]
    
    # Create arrays of known face encodings and their names
    known_face_encodings = [
        Mahuateng_face_encoding,
        Mayun_face_encoding
    ]
    
    known_face_names = [
        "Ma Huateng",
        "Ma Yun"
    ]
    
    
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    
    process_this_frame = True
    
    while True:
    
        # Grab a single frame of video
        ret, frame = video_capture.read()
    
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
    
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # # If a match was found in known_face_encodings, just use the first one.
                # if True in matches:
                #     first_match_index = matches.index(True)
                #     name = known_face_names[first_match_index]
                # Or instead, use the known face with the smallest distance to the new face
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
    
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    

    结合微服务的进阶任务

    安装Docker

    下载安装脚本

    curl -fsSL https://get.docker.com -o get-docker.sh
    

    运行安装脚本(阿里云镜像)

    sh get-docker.sh --mirror Aliyun
    

    查看docker版本,验证是否安装成功

    添加用户到docker组

    sudo usermod -aG docker pi 
    

    重新登陆让用户组生效

    exit 
    ssh pi@raspiberry
    

    重启之后,docker指令之前就不需要加sudo了

    定制opencv镜像

    拉取镜像

    docker pull sixsq/opencv-python
    

    创建并运行容器

    docker run -it sixsq/opencv-python /bin/bash
    

    在容器中,用pip3安装 "picamera[array]",dlib和face_recognition

    pip3 install "picamera[array]" 
    pip3 install dlib
    pip3 install face_recognition
    exit
    

    commit镜像

    自定义镜像

    • Dockerfile
    FROM opencv1
    RUN mkdir /myapp
    WORKDIR /myapp
    COPY myapp .
    

    构建镜像

    docker build -t opencv2 .
    

    运行容器执行facerec_on_raspberry_pi.py

    docker run -it --device=/dev/vchiq --device=/dev/video0 --name myopencv opencv2
    python3 facerec_on_raspberry_pi.py
    

    选做在opencv的docker容器中跑通步骤(3)的示例代码facerec_from_webcam_faster.py

    在Windows系统中安装Xming

    开启树莓派的ssh配置中的X11


    查看DISPLAY环境变量值

    printenv
    

    编写run.sh

    #sudo apt-get install x11-xserver-utils
    xhost +
    docker run -it 
            --net=host 
            -v $HOME/.Xauthority:/root/.Xauthority 
            -e DISPLAY=:10.0  
            -e QT_X11_NO_MITSHM=1 
            --device=/dev/vchiq 
            --device=/dev/video0 
            --name facerecgui 
            opencv2 
    	python3 facerec_from_webcam_faster.py
    

    打开终端,运行run.sh

    sh run.sh
    

    可以看到在windows的Xvideo可以正确识别人脸。

    遇到的问题

    openCV的安装

    import cv2时出现问题:

    解决方法:

    查资料发现是没有指定版本的缘故,把export LD_PRELOAD=/usr/lib/arm-linux-gnueabihf/libatomic.so.1 加到.bashrc文件,然后在 source .bashrc使之生效。

    以及各种下载速度过慢,通过换源and玄学reboot解决了。

    分工协作及总结

    分工协作

    学号 姓名 分工
    021700134 翁正凯 实机操作,查阅资料
    021700827 张启荣 查阅资料,寻找解决方法
    031702126 李家涌 博客编写,查阅资料

    主要通过qq视频,群聊进行沟通和资料分享

    小结

    整个实验下来,主要是在安装openCV的时候花费的时间比较多。由于编译安装需要的时间较久且复杂,就决定用pip安装,后面又在真机和虚拟环境中安装openCV反复横跳,最后还是在真机上完成的,在线协作和学习理论知识以及实践操作合计大概有18h,总之还是学到了许多以及docker真香。

    参考链接

    通过pip安装opencv

    openCV安装问题

    人脸识别

    选做

  • 相关阅读:
    WCF 订单服务(2)
    移动应用接口的授权和安全
    数据库服务器死锁的解决方法 (转)
    WCF 订单服务(3)
    sqlservice 表分区方法
    基于.NET解决方案的架构和框架
    IIS7架构原理
    多线程的同步和通信
    【原创】关于wince OS开发面试问题的总结系列之OAL
    【原创】关于noot的学习笔记
  • 原文地址:https://www.cnblogs.com/ddaydream/p/13052323.html
Copyright © 2011-2022 走看看