zoukankan      html  css  js  c++  java
  • Oracle

    一、前言

    生产中偶尔会碰到一些sql,有多种执行计划,其中部分情况是统计信息过旧造成的,重新收集下统计信息就行了。但是有些时候重新收集统计信息也解决不了问题,而开发又在嗷嗷叫,没时间让你去慢慢分析原因的时候,这时临时的解决办法是通过spm去固定一个正确的执行计划,等找到真正原因后再解除该spm。


    二、解决办法

    1. 通过dbms_xplan.display_cursor查看指定sql都有哪些执行计划

    SQL> select * from table(dbms_xplan.display_cursor('&sql_id',null,'TYPICAL PEEKED_BINDS')); 

    Enter value for sql_id: 66a4184u0t6hn
    old   1: select * from table(dbms_xplan.display_cursor('&sql_id',null,'TYPICAL PEEKED_BINDS'))
    new   1: select * from table(dbms_xplan.display_cursor('66a4184u0t6hn',null,'TYPICAL PEEKED_BINDS'))
    
    
    SQL_ID  66a4184u0t6hn, child number 0
    -------------------------------------
    select /*for_test*/ * from test1 where object_id = 1
    
    Plan hash value: 4122059633
    
    ---------------------------------------------------------------------------
    | Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
    ---------------------------------------------------------------------------
    |   0 | SELECT STATEMENT  |       |       |       |   693 (100)|          |
    |*  1 |  TABLE ACCESS FULL| TEST1 |   173K|    15M|   693   (1)| 00:00:09 |
    ---------------------------------------------------------------------------
    
    
    SQL_ID  66a4184u0t6hn, child number 1
    -------------------------------------
    select /*for_test*/ * from test1 where object_id = 1
    
    Plan hash value: 2214001748
    
    -----------------------------------------------------------------------------------------
    | Id  | Operation                   | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
    -----------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT            |           |       |       |     2 (100)|          |
    |   1 |  TABLE ACCESS BY INDEX ROWID| TEST1     |    11 |  1056 |     2   (0)| 00:00:01 |
    |*  2 |   INDEX RANGE SCAN          | IDX_TEST1 |       |       |     1   (0)| 00:00:01 |
    -----------------------------------------------------------------------------------------

    2. 查询该sql的历史执行情况

    SQL> col snap_id for 99999999                                                                                   
    SQL> col date_time for a30                                                                                      
    SQL> col plan_hash for 9999999999                                                                               
    SQL> col executions for 99999999                                                                                
    SQL> col avg_etime_s heading 'etime/exec' for 9999999.99                                                        
    SQL> col avg_lio heading 'buffer/exec' for 99999999999                                                          
    SQL> col avg_pio heading 'diskread/exec' for 99999999999                                                        
    SQL> col avg_cputime_s heading 'cputim/exec' for 9999999.99                                                     
    SQL> col avg_row heading 'rows/exec' for 9999999                                                                
    SQL> select * from(                                                                                             
    select distinct                                                                                            
    s.snap_id,                                                                                                 
    to_char(s.begin_interval_time,'mm/dd/yy_hh24mi') || to_char(s.end_interval_time,'_hh24mi') date_time,      
    sql.plan_hash_value plan_hash,                                                                             
    sql.executions_delta executions,                                                                           
    (sql.elapsed_time_delta/1000000)/decode(sql.executions_delta,null,1,0,1,sql.executions_delta) avg_etime_s, 
    sql.buffer_gets_delta/decode(sql.executions_delta,null,1,0,1,sql.executions_delta) avg_lio,                
    sql.disk_reads_delta/decode(sql.executions_delta,null,1,0,1,sql.executions_delta) avg_pio,                 
    (sql.cpu_time_delta/1000000)/decode(sql.executions_delta,null,1,0,1,sql.executions_delta) avg_cputime_s,   
    sql.rows_processed_total/decode(sql.executions_delta,null,1,0,1,sql.executions_delta) avg_row              
    from dba_hist_sqlstat sql, dba_hist_snapshot s                                                             
    where sql.instance_number =(select instance_number from v$instance)                                        
    and sql.dbid =(select dbid from v$database)                                                                
    and s.snap_id = sql.snap_id                                                                                
    and sql_id = trim('&sql_id') order by s.snap_id desc)                                                      
    where rownum <= 100;                                                                                       

    Enter value for sql_id: 66a4184u0t6hn
    old  16: and sql_id = trim('&sql_id') order by s.snap_id desc)
    new  16: and sql_id = trim('66a4184u0t6hn') order by s.snap_id desc)
    
      SNAP_ID DATE_TIME                        PLAN_HASH EXECUTIONS  etime/exec  buffer/exec diskread/exec cputim/exec rows/exec
    --------- ------------------------------ ----------- ---------- ----------- ------------ ------------- ----------- ---------
           39 08/16/19_1500_1600              2214001748          1         .12        25839          2901         .10    173927
           39 08/16/19_1500_1600              4122059633          3         .11        13992           847         .11    173927


    3. 绑定执行计划

    从前两步中可以看到该sql有两条执行计划,假如plan_hash_value为’2214001748’才是对的,而此时数据库选择的是另一条执行计划,我们可以通过执行以下function去将执行计划固定为我们想要的。
    SQL> var temp number;
    SQL> begin
    :temp := dbms_spm.load_plans_from_cursor_cache(sql_id=>'66a4184u0t6hn', plan_hash_value=>2214001748);
    end;
    /


    三、做个实验

    1. 准备测试表

    实验环境,使用scott账号,并给scott赋予dba权限

    SQL> create table test1 as select * from dba_objects;
    SQL> insert into test1 select * from test1;
    SQL> update test1 set object_id = 1 where rownum < (select count(*) from test1) - 10;
    SQL> commit;

    SQL> select object_id, count(*) from test1 group by object_id;

     OBJECT_ID   COUNT(*)
    ---------- ----------
             1     173927
         82112          1
         82121          1
         82118          1
         82119          1
         82122          1
         82113          1
         82114          1
         82120          1
         82115          1
         82116          1
         82117          1

    2. 创建索引并收集统计信息

    SQL> create index idx_test1 on test1(object_id) online;

    SQL> begin
    dbms_stats.gather_table_stats(ownname => 'SCOTT',
    tabname => 'TEST1',
    cascade => true, 
    method_opt => 'for columns object_id size 10',
    no_invalidate => false);
    end;
    /

    3. 通过修改优化器模式,模拟同样的sql产生两条不同的执行计划

    开启一个窗口A
    SQL> set autot trace
    SQL> alter session set optimizer_mode = all_rows;  // 11g默认的值
    SQL> select /*for_test*/ * from test1 where object_id = 1;

    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 4122059633
    
    ---------------------------------------------------------------------------
    | Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
    ---------------------------------------------------------------------------
    |   0 | SELECT STATEMENT  |       |   173K|    15M|   693   (1)| 00:00:09 |
    |*  1 |  TABLE ACCESS FULL| TEST1 |   173K|    15M|   693   (1)| 00:00:09 |
    ---------------------------------------------------------------------------

    开启另一个窗口B
    SQL> set autot trace
    SQL> alter session set optimizer_mode = first_rows_10;
    SQL> select /*for_test*/ * from test1 where object_id = 1;

    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 2214001748
    
    -----------------------------------------------------------------------------------------
    | Id  | Operation                   | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
    -----------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT            |           |    11 |  1056 |     2   (0)| 00:00:01 |
    |   1 |  TABLE ACCESS BY INDEX ROWID| TEST1     |    11 |  1056 |     2   (0)| 00:00:01 |
    |*  2 |   INDEX RANGE SCAN          | IDX_TEST1 |       |       |     1   (0)| 00:00:01 |
    -----------------------------------------------------------------------------------------

    再开启一个窗口C
    SQL> select sql_id, sql_text, optimizer_mode, plan_hash_value, child_number from v$sql where sql_text like 'select /*for_test*/ * from test1%';

    SQL_ID        SQL_TEXT                                                OPTIMIZER_ PLAN_HASH_VALUE CHILD_NUMBER
    ------------- ------------------------------------------------------- ---------- --------------- ------------
    66a4184u0t6hn select /*for_test*/ * from test1 where object_id = 1    ALL_ROWS        4122059633            0
    66a4184u0t6hn select /*for_test*/ * from test1 where object_id = 1    FIRST_ROWS      2214001748            1

    可以看到,因为优化器模式的不同,相同的sql产生了两条截然不同的执行计划
    当optimizer_mode = all_rows为全表扫描,当optimizer_mode = first_rows_10为索引扫描

    4. 绑定执行计划

    再新开一个窗口D,执行
    SQL> set autot trace
    SQL> select /*for_test*/ * from test1 where object_id = 1;

    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 4122059633
    
    ---------------------------------------------------------------------------
    | Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
    ---------------------------------------------------------------------------
    |   0 | SELECT STATEMENT  |       |   173K|    15M|   693   (1)| 00:00:09 |
    |*  1 |  TABLE ACCESS FULL| TEST1 |   173K|    15M|   693   (1)| 00:00:09 |
    ---------------------------------------------------------------------------


    可以看到执行计划为全表扫描,跟窗口A一样,这个是正常的

    通过执行以下function去将执行计划固定为索引扫描
    SQL> var temp number;
    SQL> begin
    :temp := dbms_spm.load_plans_from_cursor_cache(sql_id=>'66a4184u0t6hn', plan_hash_value=>2214001748);
    end;
    /

    再执行以下sql
    SQL> select /*for_test*/ * from test1 where object_id = 1;

    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 2214001748
    
    -----------------------------------------------------------------------------------------
    | Id  | Operation                   | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
    -----------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT            |           |    11 |  1056 |     2   (0)| 00:00:01 |
    |   1 |  TABLE ACCESS BY INDEX ROWID| TEST1     |    11 |  1056 |     2   (0)| 00:00:01 |
    |*  2 |   INDEX RANGE SCAN          | IDX_TEST1 |   173K|       |     1   (0)| 00:00:01 |
    -----------------------------------------------------------------------------------------
    
    Note
    -----
       - SQL plan baseline "SQL_PLAN_9657urkb9u2tnf24a05ff" used for this statement


    可以看到spm已经生效了

    四、删除spm

    当我们找到sql执行计划突变的原因了,解决问题之后,就可以删除spm了。如何删除spm呢?

    新开窗口E
    查看当前sql的执行计划基线
    SQL> select sql_handle, plan_name, origin from dba_sql_plan_baselines where sql_text like 'select /*for_test*/ * from test1%';

    SQL_HANDLE                     PLAN_NAME                      ORIGIN
    ------------------------------ ------------------------------ --------------
    SQL_9314fabc969d0b34           SQL_PLAN_9657urkb9u2tnf24a05ff MANUAL-LOAD
    SQL_9314fabc969d0b34           SQL_PLAN_9657urkb9u2tnfe026eff AUTO-CAPTURE

    可以看到该sql有两条PLAN_NAME,一个是系统自动捕获的,一个是我们手工绑定的,反正我们不再需要这个了,统统删除
    通过执行以下function去将执行计划基线删除
    SQL> var temp number;
    SQL> begin
    :temp := dbms_spm.drop_sql_plan_baseline(sql_handle=>'SQL_9314fabc969d0b34', plan_name=>NULL);
    end;
    /

    查看当前sql的执行计划基线
    SQL> select sql_handle, plan_name, origin from dba_sql_plan_baselines where sql_text like 'select /*for_test*/ * from test1%';
    no rows selected

    再在窗口D中执行以下sql
    SQL> select /*for_test*/ * from test1 where object_id = 1;

    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 4122059633
    
    ---------------------------------------------------------------------------
    | Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
    ---------------------------------------------------------------------------
    |   0 | SELECT STATEMENT  |       |   173K|    15M|   693   (1)| 00:00:09 |
    |*  1 |  TABLE ACCESS FULL| TEST1 |   173K|    15M|   693   (1)| 00:00:09 |
    ---------------------------------------------------------------------------


    可以看到执行计划又变成默认的全表扫描了

    五、说明

    文章例子整理于《基于oracle的sql优化》,后面将写另一个场景,就是如果系统里就一个执行计划,但是该执行计划是有问题的,如何去手工生成一个正确的执行计划,然后绑定。

  • 相关阅读:
    Beta/Gamma事后分析
    Gamma阶段发布说明
    Gamma阶段测试报告
    展示时测试Markdown渲染
    Gamma阶段项目展示
    [技术博客] 主题适配指南
    【Gamma】Scrum Meeting 10
    [技术博客]升级 API 面临的问题
    [技术博客] JS正则活学活用
    【Gamma】Scrum Meeting 9
  • 原文地址:https://www.cnblogs.com/ddzj01/p/11365541.html
Copyright © 2011-2022 走看看