zoukankan      html  css  js  c++  java
  • RabbitMQ

    ----------------------------------------------------世上本无移山之术,惟一能移山的方法就是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!


    什么叫消息队列

    消息(Message)是指在应用间传送的数据。消息可以非常简单,比如只包含文本字符串,也可以更复杂,可能包含嵌入对象。

    消息队列(Message Queue)是一种应用间的通信方式,消息发送后可以立即返回,由消息系统来确保消息的可靠传递。消息发布者只管把消息发布到 MQ 中而不用管谁来取,消息使用者只管从 MQ 中取消息而不管是谁发布的。这样发布者和使用者都不用知道对方的存在。

    为何用消息队列

    从上面的描述中可以看出消息队列是一种应用间的异步协作机制,那什么时候需要使用 MQ 呢?

    以常见的订单系统为例,用户点击【下单】按钮之后的业务逻辑可能包括:扣减库存、生成相应单据、发红包、发短信通知。在业务发展初期这些逻辑可能放在一起同步执行,随着业务的发展订单量增长,需要提升系统服务的性能,这时可以将一些不需要立即生效的操作拆分出来异步执行,比如发放红包、发短信通知等。这种场景下就可以用 MQ ,在下单的主流程(比如扣减库存、生成相应单据)完成之后发送一条消息到 MQ 让主流程快速完结,而由另外的单独线程拉取MQ的消息(或者由 MQ 推送消息),当发现 MQ 中有发红包或发短信之类的消息时,执行相应的业务逻辑。

    详细

    RabbitMQ 

    RabbitMQ 是一个由 Erlang 语言开发的 AMQP 的开源实现。

    rabbitMQ是一款基于AMQP协议的消息中间件,它能够在应用之间提供可靠的消息传输。在易用性,扩展性,高可用性上表现优秀。使用消息中间件利于应用之间的解耦,生产者(客户端)无需知道消费者(服务端)的存在。而且两端可以使用不同的语言编写,大大提供了灵活性。

     

    中文文档

    rabbitMQ安装

    复制代码
    for Linux:
    
    安装配置epel源
       $ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
     
    安装erlang
       $ yum -y install erlang
     
    安装RabbitMQ
       $ yum -y install rabbitmq-server
    注意:service rabbitmq-server start/stop
    复制代码
    for Mac:
    
    bogon:~ yuan$ brew install rabbitmq
    bogon:~ yuan$ export PATH=$PATH:/usr/local/sbin
    bogon:~ yuan$ rabbitmq-server

    rabbitMQ工作模型

    简单模式

    示例

    复制代码
    # ######################### 生产者 #########################
    #!/usr/bin/env python
    import pika
    connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost'))
    
    channel = connection.channel()
    
    channel.queue_declare(queue='hello')
    
    channel.basic_publish(exchange='',
                          routing_key='hello',
                          body='Hello World!')
    
    print(" [x] Sent 'Hello World!'")
    connection.close()
    复制代码
    复制代码
    # ########################## 消费者 ##########################
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
    channel = connection.channel()
     
    channel.queue_declare(queue='hello')
     
    def callback(ch, method, properties, body):
        print(" [x] Received %r" % body)
     
    channel.basic_consume( callback,
                           queue='hello',
                           no_ack=True)
     
    print(' [*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()
    复制代码

    相关参数

    (1)no-ack = False,如果消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。

    • 回调函数中的ch.basic_ack(delivery_tag=method.delivery_tag)
    • basic_comsume中的no_ack=False

    消息接收端应该这么写:

    复制代码
    import pika
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='10.211.55.4'))
    channel = connection.channel()
    
    channel.queue_declare(queue='hello')
    
    def callback(ch, method, properties, body):
        print(" [x] Received %r" % body)
        import time
        time.sleep(10)
        print 'ok'
        ch.basic_ack(delivery_tag = method.delivery_tag)
    
    channel.basic_consume(callback,
                          queue='hello',
                          no_ack=False)
    
    print(' [*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()
    复制代码

    (2)  durable  :消息不丢失

    复制代码
    # 生产者
    #!/usr/bin/env python
    import pika
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
    channel = connection.channel()
    
    # make message persistent
    channel.queue_declare(queue='hello', durable=True)
    
    channel.basic_publish(exchange='',
                          routing_key='hello',
                          body='Hello World!',
                          properties=pika.BasicProperties(
                              delivery_mode=2, # make message persistent
                          ))
    print(" [x] Sent 'Hello World!'")
    connection.close()
    
    
    # 消费者
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import pika
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
    channel = connection.channel()
    
    # make message persistent
    channel.queue_declare(queue='hello', durable=True)
    
    
    def callback(ch, method, properties, body):
        print(" [x] Received %r" % body)
        import time
        time.sleep(10)
        print 'ok'
        ch.basic_ack(delivery_tag = method.delivery_tag)
    
    channel.basic_consume(callback,
                          queue='hello',
                          no_ack=False)
    
    print(' [*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()
    复制代码

    (3) 消息获取顺序

    默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。

    channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列

    复制代码
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import pika
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
    channel = connection.channel()
    
    # make message persistent
    channel.queue_declare(queue='hello')
    
    
    def callback(ch, method, properties, body):
        print(" [x] Received %r" % body)
        import time
        time.sleep(10)
        print 'ok'
        ch.basic_ack(delivery_tag = method.delivery_tag)
    
    channel.basic_qos(prefetch_count=1)
    
    channel.basic_consume(callback,
                          queue='hello',
                          no_ack=False)
    
    print(' [*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()
    复制代码

    exchange模型

    3.1 发布订阅

    发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。

    exchange type = fanout
     View Code

     3.2 关键字发送

     exchange type = direct

    之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

     View Code

     3.3 模糊匹配

     exchange type = topic

    发送者路由值              队列中
    old.boy.python          old.*  -- 不匹配
    old.boy.python          old.#  -- 匹配

    在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。

    • # 表示可以匹配 0 个 或 多个 单词
    • *  表示只能匹配 一个 单词

     示例:

    复制代码
    #!/usr/bin/env python
    import pika
    import sys
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
    
    channel.exchange_declare(exchange='topic_logs',
                             type='topic')
    
    result = channel.queue_declare(exclusive=True)
    queue_name = result.method.queue
    
    binding_keys = sys.argv[1:]
    if not binding_keys:
        sys.stderr.write("Usage: %s [binding_key]...
    " % sys.argv[0])
        sys.exit(1)
    
    for binding_key in binding_keys:
        channel.queue_bind(exchange='topic_logs',
                           queue=queue_name,
                           routing_key=binding_key)
    
    print(' [*] Waiting for logs. To exit press CTRL+C')
    
    def callback(ch, method, properties, body):
        print(" [x] %r:%r" % (method.routing_key, body))
    
    channel.basic_consume(callback,
                          queue=queue_name,
                          no_ack=True)
    
    channel.start_consuming()
    复制代码

     基于RabbitMQ的RPC

    Callback queue 回调队列

    一个客户端向服务器发送请求,服务器端处理请求后,将其处理结果保存在一个存储体中。而客户端为了获得处理结果,那么客户在向服务器发送请求时,同时发送一个回调队列地址reply_to

    Correlation id 关联标识

    一个客户端可能会发送多个请求给服务器,当服务器处理完后,客户端无法辨别在回调队列中的响应具体和那个请求时对应的。为了处理这种情况,客户端在发送每个请求时,同时会附带一个独有correlation_id属性,这样客户端在回调队列中根据correlation_id字段的值就可以分辨此响应属于哪个请求。


    客户端发送请求:某个应用将请求信息交给客户端,然后客户端发送RPC请求,在发送RPC请求到RPC请求队列时,客户端至少发送带有reply_to以及correlation_id两个属性的信息
    
    服务器端工作流: 等待接受客户端发来RPC请求,当请求出现的时候,服务器从RPC请求队列中取出请求,然后处理后,将响应发送到reply_to指定的回调队列中
    
    客户端接受处理结果: 客户端等待回调队列中出现响应,当响应出现时,它会根据响应中correlation_id字段的值,将其返回给对应的应用

    服务器端

    复制代码
    #!/usr/bin/env python
    import pika
    
    # 建立连接,服务器地址为localhost,可指定ip地址
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    
    # 建立会话
    channel = connection.channel()
    
    # 声明RPC请求队列
    channel.queue_declare(queue='rpc_queue')
    
    # 数据处理方法
    def fib(n):
        if n == 0:
            return 0
        elif n == 1:
            return 1
        else:
            return fib(n-1) + fib(n-2)
    
    # 对RPC请求队列中的请求进行处理
    def on_request(ch, method, props, body):
        n = int(body)
    
        print(" [.] fib(%s)" % n)
    
        # 调用数据处理方法
        response = fib(n)
    
        # 将处理结果(响应)发送到回调队列
        ch.basic_publish(exchange='',
                         routing_key=props.reply_to,
                         properties=pika.BasicProperties(correlation_id = 
                                                             props.correlation_id),
                         body=str(response))
        ch.basic_ack(delivery_tag = method.delivery_tag)
    
    # 负载均衡,同一时刻发送给该服务器的请求不超过一个
    channel.basic_qos(prefetch_count=1)
    
    channel.basic_consume(on_request, queue='rpc_queue')
    
    print(" [x] Awaiting RPC requests")
    channel.start_consuming()
    复制代码

    客户端

    复制代码
    #!/usr/bin/env python
    import pika
    import uuid
    
    class FibonacciRpcClient(object):
        def __init__(self):
            ”“”
            客户端启动时,创建回调队列,会开启会话用于发送RPC请求以及接受响应
            
            “”“
            
            # 建立连接,指定服务器的ip地址
            self.connection = pika.BlockingConnection(pika.ConnectionParameters(
                    host='localhost'))
                    
            # 建立一个会话,每个channel代表一个会话任务
            self.channel = self.connection.channel()
            
            # 声明回调队列,再次声明的原因是,服务器和客户端可能先后开启,该声明是幂等的,多次声明,但只生效一次
            result = self.channel.queue_declare(exclusive=True)
            # 将次队列指定为当前客户端的回调队列
            self.callback_queue = result.method.queue
            
            # 客户端订阅回调队列,当回调队列中有响应时,调用`on_response`方法对响应进行处理; 
            self.channel.basic_consume(self.on_response, no_ack=True,
                                       queue=self.callback_queue)
    
    
        # 对回调队列中的响应进行处理的函数
        def on_response(self, ch, method, props, body):
            if self.corr_id == props.correlation_id:
                self.response = body
    
    
        # 发出RPC请求
        def call(self, n):
        
            # 初始化 response
            self.response = None
            
            #生成correlation_id 
            self.corr_id = str(uuid.uuid4())
            
            # 发送RPC请求内容到RPC请求队列`rpc_queue`,同时发送的还有`reply_to`和`correlation_id`
            self.channel.basic_publish(exchange='',
                                       routing_key='rpc_queue',
                                       properties=pika.BasicProperties(
                                             reply_to = self.callback_queue,
                                             correlation_id = self.corr_id,
                                             ),
                                       body=str(n))
                                       
            
            while self.response is None:
                self.connection.process_data_events()
            return int(self.response)
    
    # 建立客户端
    fibonacci_rpc = FibonacciRpcClient()
    
    # 发送RPC请求
    print(" [x] Requesting fib(30)")
    response = fibonacci_rpc.call(30)
    print(" [.] Got %r" % response)
  • 相关阅读:
    过用户层HOOK思路
    Linux LVM实践
    matlab演奏卡农 Cripple Pachebel's Canon on Matlab
    rman备份恢复总结
    郁金香VC外挂教程(全) 翻录版 免Key(精品教程)
    C# string 中的 @ 作用处理\等字符
    (抓)2分法通用存储过程分页(top max模式)版本(性能相对之前的not in版本极大提高)
    怎样应用OracleParameter怎样写like查询语句?
    (转)DirectoryEntry的使用
    解决模式对话框和window.open打开新页面Session会丢失问题
  • 原文地址:https://www.cnblogs.com/dealdwong2018/p/10523165.html
Copyright © 2011-2022 走看看