zoukankan      html  css  js  c++  java
  • Covered Path

    The on-board computer on Polycarp's car measured that the car speed at the beginning of some section of the path equals v1 meters per second, and in the end it is v2 meters per second. We know that this section of the route took exactly t seconds to pass.

    Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by d meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed d in absolute value), find the maximum possible length of the path section in meters.

    Input

    The first line contains two integers v1 and v2 (1 ≤ v1, v2 ≤ 100) — the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively.

    The second line contains two integers t (2 ≤ t ≤ 100) — the time when the car moves along the segment in seconds, d (0 ≤ d ≤ 10) — the maximum value of the speed change between adjacent seconds.

    It is guaranteed that there is a way to complete the segment so that:

    • the speed in the first second equals v1,
    • the speed in the last second equals v2,
    • the absolute value of difference of speeds between any two adjacent seconds doesn't exceed d.
    Output

    Print the maximum possible length of the path segment in meters.

    Examples
    input
    Copy
    5 6
    4 2
    output
    Copy
    26
    input
    Copy
    10 10
    10 0
    output
    Copy
    100
    Note

    In the first sample the sequence of speeds of Polycarpus' car can look as follows: 5, 7, 8, 6. Thus, the total path is 5 + 7 + 8 + 6 = 26 meters.

    In the second sample, as d = 0, the car covers the whole segment at constant speed v = 10. In t = 10 seconds it covers the distance of 100 meters.

    贪心也有狗头马尾,主要是不容易想到每秒最快的速度的条件

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <unordered_set>
    #include <unordered_map>
    //#include <xfunctional>
    #define ll long long
    #define mod 1000000007
    using namespace std;
    int dir[4][2] = { { 0,1 },{ 0,-1 },{ -1,0 },{ 1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    
    int main()
    {
        int v1, v2, t, d;
        cin >> v1 >> v2 >> t >> d;
        int sum = 0;
        for (int i = 0; i < t; i++)
        {
            sum += min(v1 + d*i, v2 + d*(t - i -1));
        }
        cout << sum;
        return 0;
    }
     
  • 相关阅读:
    MySql模糊查询like通配符使用详细介绍
    使用powershell批量添加Qt的文件(生成pro)
    宏定义的教训
    使用powershell批量添加Keil和IAR的头文件路径
    python和数据科学(Anaconda)
    CDCE913产生任意频率
    QT中检索设定目录下所有指定文件的方法
    QT中将ASCII转换为对应数值的方法
    STM8如何使用自带的bootloader
    QT中使用函数指针
  • 原文地址:https://www.cnblogs.com/dealer/p/12435040.html
Copyright © 2011-2022 走看看