Given a positive integer n, write a program to find out a nonzero multiple m of n whose decimal representation contains only the digits 0 and 1. You may assume that n is not greater than 200 and there is a corresponding m containing no more than 100 decimal digits.
Input
The input file may contain multiple test cases. Each line contains a value of n (1 <= n <= 200). A line containing a zero terminates the input.
Output
For each value of n in the input print a line containing the corresponding value of m. The decimal representation of m must not contain more than 100 digits. If there are multiple solutions for a given value of n, any one of them is acceptable.
Sample Input
2 6 19 0
Sample Output
10 100100100100100100 111111111111111111
在VOJ上BFS要超时,看别人用dp做的不超时
BFS:
#include <iostream> #include <vector> #include <algorithm> #include <string> #include <set> #include <queue> #include <map> #include <sstream> #include <cstdio> #include <cstring> #include <numeric> #include <cmath> #include <iomanip> //#include <unordered_set> //#include <unordered_map> //#include <xfunctional> #define ll long long #define PII pair<int, int> using namespace std; int dir[5][2] = { {0,1} ,{0,-1}, {1,0}, {-1,0} ,{0,0} }; const long long INF = 0x7f7f7f7f7f7f7f7f; const int inf = 0x3f3f3f3f; const double pi = 3.14159265358979; const int mod = 1e9 + 7; const int maxn = 16; //if(x<0 || x>=r || y<0 || y>=c) int n; int main() { while (cin >> n && n != 0) { queue<ll> que; que.push(1); while (!que.empty()) { ll tmp=que.front(); que.pop(); if (tmp%n==0) { cout << tmp << endl; break; } que.push(tmp * 10); que.push(tmp * 10 + 1); } } return 0; }
DP:
#include<iostream> #include<vector> using namespace std; const int maxn=5e6; int n; int dp[maxn]; vector<int> ans; int main() { while(cin>>n && n) { dp[1]=1%n; int now; for(int i=1;;i++) { if(!(dp[i*2]=dp[i]*10%n)) {now=i*2;break;} if(!(dp[i*2+1]=(dp[i]*10+1)%n)) {now=i*2+1;break;} } ans.clear(); while(now) { ans.push_back(now%2); now/=2; } for(int i=ans.size()-1;i>=0;i--) cout<<ans[i]; cout<<endl; } }