zoukankan      html  css  js  c++  java
  • B. Orac and Models

    There are nn models in the shop numbered from 11 to nn, with sizes s1,s2,,sns1,s2,…,sn.

    Orac will buy some of the models and will arrange them in the order of increasing numbers (i.e. indices, but not sizes).

    Orac thinks that the obtained arrangement is beatiful, if for any two adjacent models with indices ijij and ij+1ij+1 (note that ij<ij+1ij<ij+1, because Orac arranged them properly), ij+1ij+1 is divisible by ijij and sij<sij+1sij<sij+1.

    For example, for 66 models with sizes {3,6,7,7,7,7}{3,6,7,7,7,7}, he can buy models with indices 11, 22, and 66, and the obtained arrangement will be beautiful. Also, note that the arrangement with exactly one model is also considered beautiful.

    Orac wants to know the maximum number of models that he can buy, and he may ask you these queries many times.

    Input

    The first line contains one integer t (1t100)t (1≤t≤100): the number of queries.

    Each query contains two lines. The first line contains one integer n (1n100000)n (1≤n≤100000): the number of models in the shop, and the second line contains nn integers s1,,sn (1si109)s1,…,sn (1≤si≤109): the sizes of models.

    It is guaranteed that the total sum of nn is at most 100000100000.

    Output

    Print tt lines, the ii-th of them should contain the maximum number of models that Orac can buy for the ii-th query.

    Example
    input
    Copy
    4
    4
    5 3 4 6
    7
    1 4 2 3 6 4 9
    5
    5 4 3 2 1
    1
    9
    
    output
    Copy
    2
    3
    1
    1
    
    Note

    In the first query, for example, Orac can buy models with indices 22 and 44, the arrangement will be beautiful because 44 is divisible by 22 and 66 is more than 33. By enumerating, we can easily find that there are no beautiful arrangements with more than two models.

    In the second query, Orac can buy models with indices 11, 33, and 66. By enumerating, we can easily find that there are no beautiful arrangements with more than three models.

    In the third query, there are no beautiful arrangements with more than one model.

    从前往后更新,复杂度O(nlogn)

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    #define ll              long long
    #define PII             pair<int, int>
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    #define pb              push_back
    #define mk              make_pair
    using namespace std;
    int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const int mod = 998244353;
    const int N = 2e5 + 5;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    
    int main()
    {
        int T;
        cin >> T;
        while (T--)
        {
            int n;
            cin >> n;
            vector<int> a(n+1),b(n+1,1);
            rep(i, 1, n)
            {
                cin >> a[i];
            }
            rep(i, 1, n)
            {
                for(int j=2*i;j<=n;j+=i)
                {
                    if (a[j] > a[i])
                    {
                        b[j] = max(b[j], b[i] + 1);
                    }
                }
            }
            int ans = 0;
            rep(i, 1, n)
            {
                ans = max(ans, b[i]);
            }
            cout << ans << endl;
        }
        return 0;
    }
  • 相关阅读:
    【NOI1999、LOJ#10019】生日蛋糕(搜索、最优化剪枝、可行性剪枝)
    【NOI2016】区间
    【CodeForces688A】Opponents
    「LOJ10150」括号配对
    HDU6444(子段和、分情况比较)
    牛客练习赛41E(球的体积并)
    Codeforces 1154G(枚举)
    POJ1830(异或高斯消元)
    Codeforces 1114F(欧拉函数、线段树)
    牛客小白月赛13 G(双向搜索)
  • 原文地址:https://www.cnblogs.com/dealer/p/12956202.html
Copyright © 2011-2022 走看看