zoukankan      html  css  js  c++  java
  • C. Palindromic Paths

    You are given a matrix with nn rows (numbered from 11 to nn) and mm columns (numbered from 11 to mm). A number ai,jai,j is written in the cell belonging to the ii-th row and the jj-th column, each number is either 00 or 11.

    A chip is initially in the cell (1,1)(1,1), and it will be moved to the cell (n,m)(n,m). During each move, it either moves to the next cell in the current row, or in the current column (if the current cell is (x,y)(x,y), then after the move it can be either (x+1,y)(x+1,y) or (x,y+1)(x,y+1)). The chip cannot leave the matrix.

    Consider each path of the chip from (1,1)(1,1) to (n,m)(n,m). A path is called palindromic if the number in the first cell is equal to the number in the last cell, the number in the second cell is equal to the number in the second-to-last cell, and so on.

    Your goal is to change the values in the minimum number of cells so that every path is palindromic.

    Input

    The first line contains one integer tt (1t2001≤t≤200) — the number of test cases.

    The first line of each test case contains two integers nn and mm (2n,m302≤n,m≤30) — the dimensions of the matrix.

    Then nn lines follow, the ii-th line contains mm integers ai,1ai,1, ai,2ai,2, ..., ai,mai,m (0ai,j10≤ai,j≤1).

    Output

    For each test case, print one integer — the minimum number of cells you have to change so that every path in the matrix is palindromic.

    Example
    input
    Copy
    4
    2 2
    1 1
    0 1
    2 3
    1 1 0
    1 0 0
    3 7
    1 0 1 1 1 1 1
    0 0 0 0 0 0 0
    1 1 1 1 1 0 1
    3 5
    1 0 1 0 0
    1 1 1 1 0
    0 0 1 0 0
    
    output
    Copy
    0
    3
    4
    4
    
     
    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    #include <unordered_set>
    #include <unordered_map>
    #define ll              long long
    #define PII             pair<int, int>
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    using namespace std;
    int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const double eps = 1e-6;
    const int mod =1e9+7;
    const int N = 200005;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    ll qpow(ll m, ll k, ll mod)
    {
        ll res = 1, t = m;
        while (k)
        {
            if (k & 1)
                res = res * t % mod;
            t = t * t % mod;
            k >>= 1;
        }
        return res;
    }       
    
    int main()
    {
        int T;
        cin >> T;
        while (T--)
        {
            int m, n;
            cin >> n >> m;
            vector<vector<int>> a(n, vector<int>(m));
            for (int i = 0; i < n; i++)
            {
                for (int j = 0; j < m; j++)
                {
                    cin >> a[i][j];
                }
            }
            vector<vector<int>> cnt(n + m - 1,vector<int>(2));
            for (int i = 0; i < n; i++)
            {
                for (int j = 0; j < m; j++)
                {
                    cnt[i+j][a[i][j]]++;
                }
            }
            int res = 0;
            for (int i = 0; i < (n + m - 1)/2; i++)
            {
                int j = m + n - 2 - i;
                res += min(cnt[i][0] + cnt[j][0], cnt[i][1] + cnt[j][1]);
            }
            cout << res << endl;
        }
        return 0;
    }
  • 相关阅读:
    vue element 关于表单数组循环、对象数据校验
    vue 解耦双向数据绑定,new Set() 去重数组/对象
    Vue-cli3.0搭建和一些坑
    微信小程序入门学习小结--全局设置、数据请求、双向绑定、页面路由跳转、模板抽取
    Vuex简单入门实例
    关于wamp的HTML, PHP, mysql 三者的操作与联系
    关于wamp的HTML, PHP, mysql 三者的操作与联系
    浏览器知识小整理
    HTML DOM textContent 与 innerHTML的区别
    T-SQL查询进阶--SQL Server中的事务与锁
  • 原文地址:https://www.cnblogs.com/dealer/p/13112219.html
Copyright © 2011-2022 走看看