zoukankan      html  css  js  c++  java
  • H

    Problem Statement

    There is a grid with HH horizontal rows and WW vertical columns. Let (i,j)(i,j) denote the square at the ii-th row from the top and the jj-th column from the left.

    For each ii and jj (1iH1≤i≤H1jW1≤j≤W), Square (i,j)(i,j) is described by a character ai,jai,j. If ai,jai,j is ., Square (i,j)(i,j) is an empty square; if ai,jai,j is #, Square (i,j)(i,j) is a wall square. It is guaranteed that Squares (1,1)(1,1) and (H,W)(H,W) are empty squares.

    Taro will start from Square (1,1)(1,1) and reach (H,W)(H,W) by repeatedly moving right or down to an adjacent empty square.

    Find the number of Taro's paths from Square (1,1)(1,1) to (H,W)(H,W). As the answer can be extremely large, find the count modulo 109+7109+7.

    Constraints

    • HH and WW are integers.
    • 2H,W10002≤H,W≤1000
    • ai,jai,j is . or #.
    • Squares (1,1)(1,1) and (H,W)(H,W) are empty squares.

    Input

    Input is given from Standard Input in the following format:

    HH WW
    a1,1a1,1a1,Wa1,W
    ::
    aH,1aH,1aH,WaH,W
    

    Output

    Print the number of Taro's paths from Square (1,1)(1,1) to (H,W)(H,W), modulo 109+7109+7.


    Sample Input 1 Copy

    Copy
    3 4
    ...#
    .#..
    ....
    

    Sample Output 1 Copy

    Copy
    3
    

    There are three paths as follows:


    Sample Input 2 Copy

    Copy
    5 2
    ..
    #.
    ..
    .#
    ..
    

    Sample Output 2 Copy

    Copy
    0
    

    There may be no paths.


    Sample Input 3 Copy

    Copy
    5 5
    ..#..
    .....
    #...#
    .....
    ..#..
    

    Sample Output 3 Copy

    Copy
    24
    

    Sample Input 4 Copy

    Copy
    20 20
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    ....................
    

    Sample Output 4 Copy

    Copy
    345263555
    

    Be sure to print the count modulo 109+7109+7.

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    #include <unordered_set>
    #include <unordered_map>
    #define ll              long long
    #define pii             pair<int, int>
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    using namespace std;
    int dir[4][2] = { { 1,0 },{ 0,1 } ,{ 0,-1 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const double eps = 1e-6;
    const int mod = 1e9 + 7;
    const int N = 1e3 + 5;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    bool prime(int x) {
        if (x < 2) return false;
        for (int i = 2; i * i <= x; ++i) {
            if (x % i == 0) return false;
        }
        return true;
    }
    ll qpow(ll m, ll k, ll mod)
    {
        ll res = 1, t = m;
        while (k)
        {
            if (k & 1)
                res = res * t % mod;
            t = t * t % mod;
            k >>= 1;
        }
        return res;
    }
    bool vis[N][N];
    queue<pii> q;
    int cnt[N][N];
    int main()
    {
        int n, m;
        cin >> n >> m;
        vector<string> g(n);
        for (int i = 0; i < n; i++)
            cin >> g[i];
        q.push({ 0,0 });
        vis[0][0] = 1;
        cnt[0][0] = 1;
        while (!q.empty())
        {
            pii f = q.front();
            q.pop();
            for (int i = 0; i < 2; i++)
            {
                int x = f.first + dir[i][0], y = f.second + dir[i][1];
                if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == '.')
                {
                    cnt[x][y] = (cnt[f.first][f.second] + cnt[x][y]) % mod;
                    if (!vis[x][y])
                    {
                        vis[x][y] = 1;
                        q.push({ x,y });
                    }
                }
            }
        }
        cout << cnt[n - 1][m - 1] << endl;
        return 0;
    }
  • 相关阅读:
    多路复用与设置阻塞、非阻塞模式
    ['\xef\xbb\xbf这个什么含义? PY技术开发交流区 乐讯手机高手
    fcntl使用 and_tt 博客园
    Linux 设备驱动 Edition 3Linux设备驱动第三版(中文版)
    CRT source Google 搜索
    BOM–字节序标记 永不放弃的地盘 博客频道 CSDN.NET
    在C语言中,unsigned char是什么类型?_百度知道
    The JR Concurrent Programming Language
    C语言:为什么用fprintf(stderr,"Error");比printf("Error");更好?
    bash
  • 原文地址:https://www.cnblogs.com/dealer/p/13151239.html
Copyright © 2011-2022 走看看