zoukankan      html  css  js  c++  java
  • C. Count Triangles

    Like any unknown mathematician, Yuri has favourite numbers: AA, BB, CC, and DD, where ABCDA≤B≤C≤D. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides xx, yy, and zz exist, such that AxByCzDA≤x≤B≤y≤C≤z≤D holds?

    Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.

    The triangle is called non-degenerate if and only if its vertices are not collinear.

    Input

    The first line contains four integers: AA, BB, CC and DD (1ABCD51051≤A≤B≤C≤D≤5⋅105) — Yuri's favourite numbers.

    Output

    Print the number of non-degenerate triangles with integer sides xx, yy, and zz such that the inequality AxByCzDA≤x≤B≤y≤C≤z≤D holds.

    Examples
    input
    Copy
    1 2 3 4
    
    output
    Copy
    4
    
    input
    Copy
    1 2 2 5
    
    output
    Copy
    3
    
    input
    Copy
    500000 500000 500000 500000
    
    output
    Copy
    1
    
    Note

    In the first example Yuri can make up triangles with sides (1,3,3)(1,3,3), (2,2,3)(2,2,3), (2,3,3)(2,3,3) and (2,3,4)(2,3,4).

    In the second example Yuri can make up triangles with sides (1,2,2)(1,2,2), (2,2,2)(2,2,2) and (2,2,3)(2,2,3).

    In the third example Yuri can make up only one equilateral triangle with sides equal to 51055⋅105.

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    //#include <unordered_set>
    //#include <unordered_map>
    #define ll              long long
    #define pii             pair<int, int>
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    #define forn(i, n)      for(int i = 0; i < int(n); i++)
    using namespace std;
    int dir[4][2] = { { 1,0 },{ 0,1 } ,{ 0,-1 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const double eps = 1e-6;
    const int mod = 1e9 + 7;
    const int N = 5e5 + 5;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    bool prime(int x) {
        if (x < 2) return false;
        for (int i = 2; i * i <= x; ++i) {
            if (x % i == 0) return false;
        }
        return true;
    }
    ll qpow(ll m, ll k, ll mod)
    {
        ll res = 1, t = m;
        while (k)
        {
            if (k & 1)
                res = res * t % mod;
            t = t * t % mod;
            k >>= 1;
        }
        return res;
    }
    ll sum[N],cnt[N],tot;
    int main()
    {
        ll a, b, c, d;
        cin >> a >> b >> c >> d;
        ll l = -1, r = d - b+1,mx=min(d-c+1,c-b+1);
        while (r > l)
        {
            tot++;
            r--, l++;
            cnt[r] = cnt[l] = min(tot, mx);
    
        }
        sum[0] = cnt[0];
        rep(i, 1, d)
        {
            sum[i] = sum[i - 1] + cnt[i];
        }
        ll ans = 0;
        rep(i,a,b)
        {
            ans += sum[i - 1];
        }
        cout << ans << endl;
        return 0;
    }
  • 相关阅读:
    linux下的第一个C程序及其编译方法
    使用open_read_write等底层函数来赋值一个文件
    C++中预定义的宏
    altibase MDB的创建sequence的举例
    C中的时间函数的用法
    联系表单 1
    《jQuery基础教程》读书笔记
    《jQuery基础教程》读书笔记
    《jQuery基础教程》读书笔记
    『原创·翻译』如何阅读论文
  • 原文地址:https://www.cnblogs.com/dealer/p/13210097.html
Copyright © 2011-2022 走看看