zoukankan      html  css  js  c++  java
  • D. Grid-00100

    ------------恢复内容开始------------

    D. Grid-00100
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    A mad scientist Dr.Jubal has made a competitive programming task. Try to solve it!

    You are given integers n,kn,k. Construct a grid AA with size n×nn×n consisting of integers 00 and 11. The very important condition should be satisfied: the sum of all elements in the grid is exactly kk. In other words, the number of 11 in the grid is equal to kk.

    Let's define:

    • Ai,jAi,j as the integer in the ii-th row and the jj-th column.
    • Ri=Ai,1+Ai,2+...+Ai,nRi=Ai,1+Ai,2+...+Ai,n (for all 1in1≤i≤n).
    • Cj=A1,j+A2,j+...+An,jCj=A1,j+A2,j+...+An,j (for all 1jn1≤j≤n).
    • In other words, RiRi are row sums and CjCj are column sums of the grid AA.
    • For the grid AA let's define the value f(A)=(max(R)min(R))2+(max(C)min(C))2f(A)=(max(R)−min(R))2+(max(C)−min(C))2 (here for an integer sequence XX we define max(X)max(X) as the maximum value in XX and min(X)min(X) as the minimum value in XX).

    Find any grid AA, which satisfies the following condition. Among such grids find any, for which the value f(A)f(A) is the minimum possible. Among such tables, you can find any.

    Input

    The input consists of multiple test cases. The first line contains a single integer tt (1t1001≤t≤100) — the number of test cases. Next tt lines contain descriptions of test cases.

    For each test case the only line contains two integers nn, k(1n300,0kn2)(1≤n≤300,0≤k≤n2).

    It is guaranteed that the sum of n2n2 for all test cases does not exceed 105105.

    Output

    For each test case, firstly print the minimum possible value of f(A)f(A) among all tables, for which the condition is satisfied.

    After that, print nn lines contain nn characters each. The jj-th character in the ii-th line should be equal to Ai,jAi,j.

    If there are multiple answers you can print any.

    Example
    input
    Copy
    4
    2 2
    3 8
    1 0
    4 16
    
    output
    Copy
    0
    10
    01
    2
    111
    111
    101
    0
    0
    0
    1111
    1111
    1111
    1111
    
    Note

    In the first test case, the sum of all elements in the grid is equal to 22, so the condition is satisfied. R1=1,R2=1R1=1,R2=1 and C1=1,C2=1C1=1,C2=1. Then, f(A)=(11)2+(11)2=0f(A)=(1−1)2+(1−1)2=0, which is the minimum possible value of f(A)f(A).

    In the second test case, the sum of all elements in the grid is equal to 88, so the condition is satisfied. R1=3,R2=3,R3=2R1=3,R2=3,R3=2 and C1=3,C2=2,C3=3C1=3,C2=2,C3=3. Then, f(A)=(32)2+(32)2=2f(A)=(3−2)2+(3−2)2=2. It can be proven, that it is the minimum possible value of f(A)f(A).

    ------------恢复内容结束------------

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    //#include <unordered_set>
    //#include <unordered_map>
    #define ll              long long
    #define pii             pair<int, int>
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    #define forn(i, n)      for(int i = 0; i < int(n); i++)
    using namespace std;
    int dir[4][2] = { { 1,0 },{ 0,1 } ,{ 0,-1 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const double eps = 1e-6;
    const int mod = 1e9 + 7;
    const int N = 1e5 + 5;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    bool prime(int x) {
        if (x < 2) return false;
        for (int i = 2; i * i <= x; ++i) {
            if (x % i == 0) return false;
        }
        return true;
    }
    ll qpow(ll m, ll k, ll mod)
    {
        ll res = 1, t = m;
        while (k)
        {
            if (k & 1)
                res = res * t % mod;
            t = t * t % mod;
            k >>= 1;
        }
        return res;
    }
    
    int main()
    {
        int T;
        cin >> T;
        while (T--)
        {
            int n, k, t, i, j, p, q;
            char res[305][305];
            cin >> n >> k;
            if (k % n == 0) { printf("0
    "); }
            else { printf("2
    "); }
            for (i = 0; i < n; i++) {
                for (j = 0; j < n; j++) {
                    res[i][j] = '0';
                }
                res[i][n] = 0;
            }
            p = 0; q = 0;
            while (k > 0) {
                k--;
                res[p][q] = '1';
                p++; q++; q %= n;
                if (p == n) {
                    p = 0; q++; q %= n;
                }
            }
            for (i = 0; i < n; i++) {
                printf("%s
    ", res[i]);
            }
        }
        return 0;
    }
  • 相关阅读:
    Selenium+Pytest自动化测试框架实战
    WPF性能优化经验总结
    C#跨窗体调用控件
    C# lock
    硬实时系统,到底多硬才算Hard Real Time System
    [GPIO]推荐一种超简单的硬件位带bitband操作方法,让变量,寄存器控制,IO访问更便捷,无需用户计算位置
    【STM32F407的DSP教程】第50章 STM32F407的样条插补实现,波形拟合丝滑顺畅
    实战技能分享,如何让工程代码各种优化等级通吃,含MDK AC5,AC6,IAR和GCC
    【深入探讨】DMA到底能不能起到加速程序执行的作用,DMA死等操作是否合理,多个DMA数据流同时刷是否处理过来
    《安富莱嵌入式周报》第238期:2021.11.012021.11.07
  • 原文地址:https://www.cnblogs.com/dealer/p/13227314.html
Copyright © 2011-2022 走看看