zoukankan      html  css  js  c++  java
  • 1283E

    1283E - New Year Parties

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    //#include <unordered_set>
    //#include <unordered_map>
    #define ll              long long
    #define pii             pair<int, int>
    #define rep(i,a,b)      for(ll  i=a;i<=b;i++)
    #define dec(i,a,b)      for(ll  i=a;i>=b;i--)
    #define forn(i, n)      for(ll i = 0; i < int(n); i++)
    using namespace std;
    int dir[4][2] = { { 1,0 },{ 0,1 } ,{ 0,-1 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const double eps = 1e-6;
    const int mod = 998244353;
    const int N = 2e5 + 5;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    bool prime(int x) {
        if (x < 2) return false;
        for (int i = 2; i * i <= x; ++i) {
            if (x % i == 0) return false;
        }
        return true;
    }
    inline int qpow(int x, ll n) {
        int r = 1;
        while (n > 0) {
            if (n & 1) r = 1ll * r * x % mod;
            n >>= 1; x = 1ll * x * x % mod;
        }
        return r;
    }
    inline int add(int x, int y) {
        return ((x%mod)+(y%mod))%mod;
    }
    inline int sub(int x, int y) {
        x -= y;
        return x < 0 ? x += mod : x;
    }
    inline int mul(int x, int y) {
        return (1ll * (x %mod) * (y % mod))%mod;
    }
    inline int Inv(int x) {
        return qpow(x, mod - 2);
    }
    int a[N];
    int main()
    {
        int n, minn = 0, maxn = 0;
        cin >> n;
        rep(i, 1, n)
        {
            int t;
            cin >> t;
            a[t]++;
        }
    
        rep(i, 1, n)
            if (a[i])
                i += 2,minn++;
        rep(i, 0, n)
        {
            if (a[i] == 0 && a[i + 1])
                a[i]++, a[i + 1]--;
            else if (a[i] > 1)
                a[i]--, a[i + 1]++;
        }
        rep(i, 0, n + 1)
            if (a[i])
                maxn++;
        cout << minn << " " << maxn << endl;
        return 0;
    }
  • 相关阅读:
    BF算法和KMP算法
    Python课程笔记 (五)
    0268. Missing Number (E)
    0009. Palindrome Number (E)
    0008. String to Integer (atoi) (M)
    0213. House Robber II (M)
    0198. House Robber (E)
    0187. Repeated DNA Sequences (M)
    0007. Reverse Integer (E)
    0006. ZigZag Conversion (M)
  • 原文地址:https://www.cnblogs.com/dealer/p/13256647.html
Copyright © 2011-2022 走看看