zoukankan      html  css  js  c++  java
  • RK3288 GPIO

    简介
    GPIO, 全称 General-Purpose Input/Output(通用输入输出),是一种软件运行期间能够动态配置和控制的通用引脚。
    RK3288有9组 GPIO bank: GPIO0,GPIO1, ..., GPIO8。每组又以 A0~A7, B0~B7, C0~C7, D0~D7 作为编号区分(不是所有 bank 都有全部编号,例如 GPIO5 就只有 B0~B7, C0~C3)。
    每个GPIO口除了通用输入输出功能外,还可能有其它复用功能,例如GPIO5_B4,可以复用成以下功能之一:
    spi0_clk
    ts0_data4
    uart4exp_ctsn
    每个 GPIO 口的驱动电流、上下拉和重置后的初始状态都不尽相同,详细情况请参考《RK3288 规格书》中的 "RK3288 function IO description" 一章。
    RK3288 的 GPIO 驱动是在以下 pinctrl 文件中实现的: kernel/drivers/pinctrl/pinctrl-rockchip.c
    其核心是填充 GPIO bank 的方法和参数,并调用 gpiochip_add 注册到内核中。

    使用
    开发板有两个电源 LED 灯是 GPIO 口控制的,分别是:

    从电路图上看,GPIO 口输出低电平时灯亮,高电平时灯灭。
    另外,扩展槽上引出了几个空闲的 GPIO 口,分别是:

    这几个 GPIO 口可以自定义作输入、输出使用。

    输入输出
    下面以电源 LED 灯的驱动为例,讲述如何在内核编写代码控制 GPIO 口的输出。
    首先需要在 dts (Device Tree) 文件 firefly-rk3288.dts (0930版) 或 firefly-rk3288_beta.dts (0809版) 中增加驱动的资源描述:

    firefly-led{
            compatible = "firefly,led";
            led-work = <&gpio8 GPIO_A2 GPIO_ACTIVE_LOW>;
            led-power = <&gpio8 GPIO_A1 GPIO_ACTIVE_LOW>;
            status = "okay";
    };

    这里定义了两颗 LED 灯的 GPIO 设置:
    led-work  GPIO8_A2   GPIO_ACTIVE_LOW
    led-power  GPIO8_A1  GPIO_ACTIVE_LOW
    GPIO_ACTIVE_LOW 表示低电平有效(灯亮),如果是高电平有效,需要替换为 GPIO_ACTIVE_HIGH 。

    之后在驱动程序中加入对 GPIO 口的申请和控制则可:

    #ifdef CONFIG_OF
    #include <linux/of.h>
    #include <linux/of_gpio.h>
    #endif
    static int firefly_led_probe(struct platform_device *pdev)
    {
        int ret = -1;
        int gpio, flag;
        struct device_node *led_node = pdev->dev.of_node;
     
        gpio = of_get_named_gpio_flags(led_node, "led-power", 0, &flag);
        if (!gpio_is_valid(gpio)){
            printk("invalid led-power: %d
    ",gpio);
            return -1;
        } 
        if (gpio_request(gpio, "led_power")) {
            printk("gpio %d request failed!
    ",gpio);
            return ret;
        }
        led_info.power_gpio = gpio;
        led_info.power_enable_value = (flag == OF_GPIO_ACTIVE_LOW) ? 0 : 1;
        gpio_direction_output(led_info.power_gpio, !(led_info.power_enable_value));
    ...
    on_error:
        gpio_free(gpio);
    }

    of_get_named_gpio_flags 从设备树中读取 led-power 的 GPIO 配置编号和标志,gpio_is_valid 判断该 GPIO 编号是否有效,gpio_request 则申请占用该 GPIO。如果初始化过程出错,需要调用 gpio_free 来释放之前申请过且成功的 GPIO 。
    调用 gpio_direction_output 就可以设置输出高还是低电平,因为是 GPIO_ACTIVE_LOW ,如果要灯亮,需要写入 0 。
    实际中如果要读出 GPIO,需要先设置成输入模式,然后再读取值:

    int val;
    gpio_direction_input(your_gpio);
    val = gpio_get_value(your_gpio);

    下面是常用的 GPIO API 定义:

    #include <linux/gpio.h>
    #include <linux/of_gpio.h>
    enum of_gpio_flags {
        OF_GPIO_ACTIVE_LOW = 0x1,
    };
    int of_get_named_gpio_flags(struct device_node *np, const char *propname,
                   int index, enum of_gpio_flags *flags);
    int gpio_is_valid(int gpio);
    int gpio_request(unsigned gpio, const char *label);
    void gpio_free(unsigned gpio);
    int gpio_direction_input(int gpio);
    int gpio_direction_output(int gpio, int v)

    复用
    如何定义 GPIO 有哪些功能可以复用,在运行时又如何切换功能呢?以 I2C4 为例作简单的介绍。
    查规格表可知,I2C4_SDA 与 GPIO7C1 的功能定义如下:
    Pad# func0 func1
    I2C4_SDA/GPIO7_C1  gpio7c1  i2c4tp_sda
    I2C4_SCL/GPIO7_C2  gpio7c2  i2c4tp_scl
    在 /kernel/arch/arm/boot/dts/rk3288.dtsi 里有:

    i2c4: i2c@ff160000 {
            compatible = "rockchip,rk30-i2c";
            reg = <0xff160000 0x1000>;
            interrupts = <GIC_SPI 64 IRQ_TYPE_LEVEL_HIGH>;
            #address-cells = <1>;
            #size-cells = <0>;
            pinctrl-names = "default", "gpio";
            pinctrl-0 = <&i2c4_sda &i2c4_scl>;
            pinctrl-1 = <&i2c4_gpio>;
            gpios = <&gpio7 GPIO_C1 GPIO_ACTIVE_LOW>,     
                    <&gpio7 GPIO_C2 GPIO_ACTIVE_LOW>;
            clocks = <&clk_gates6 15>;
            rockchip,check-idle = <1>;
            status = "disabled";
        };

    此处,跟复用控制相关的是 pinctrl- 开头的属性:
    pinctrl-names 定义了状态名称列表: default (i2c 功能) 和 gpio 两种状态。
    pinctrl-0 定义了状态 0 (即 default)时需要设置的 pinctrl: i2c4_sda 和 i2c4_scl
    pinctrl-1 定义了状态 1 (即 gpio)时需要设置的 pinctrl: i2c4_gpio
    这些 pinctrl 在 /kernel/arch/arm/boot/dts/rk3288-pinctrl.dtsi 中定义:

    / { 
        pinctrl: pinctrl@ff770000 {
            compatible = "rockchip,rk3288-pinctrl";
            ...
            gpio7_i2c4 {
                i2c4_sda:i2c4-sda {
                    rockchip,pins = <I2C4TP_SDA>;
                    rockchip,pull = <VALUE_PULL_DISABLE>;
                    rockchip,drive = <VALUE_DRV_DEFAULT>;
                    //rockchip,tristate = <VALUE_TRI_DEFAULT>;
                };
     
                i2c4_scl:i2c4-scl {
                    rockchip,pins = <I2C4TP_SCL>;
                    rockchip,pull = <VALUE_PULL_DISABLE>;
                    rockchip,drive = <VALUE_DRV_DEFAULT>;
                    //rockchip,tristate = <VALUE_TRI_DEFAULT>;
                };
     
                i2c4_gpio: i2c4-gpio {
                    rockchip,pins = <FUNC_TO_GPIO(I2C4TP_SDA)>, <FUNC_TO_GPIO(I2C4TP_SCL)>;
                    rockchip,drive = <VALUE_DRV_DEFAULT>;
                };
            };
            ...
        }
      }

    I2C4TP_SDA, I2C4TP_SCL 的定义在 /kernel/arch/arm/boot/dts/include/dt-bindings/pinctrl/rockchip-rk3288.h 中:

    #define GPIO7_C1 0x7c10
    #define I2C4TP_SDA 0x7c11
    #define GPIO7_C2 0x7c20
    #define I2C4TP_SCL 0x7c21

    FUN_TO_GPIO 的定义在 /kernel/arch/arm/boot/dts/include/dt-bindings/pinctrl/rockchip.h 中:
    #define FUNC_TO_GPIO(m) ((m) & 0xfff0)
    也就是说 FUNC_TO_GPIO(I2C4TP_SDA) == GPIO7_C1, FUNC_TO_GPIO(I2C4TP_SCL) == GPIO7_C2 。

    像 0x7c11 这样的值是有编码规则的:
    7 c1 1
    | | `- func
    | `---- offset
    `------ bank
    0x7c11 就表示 GPIO7_C1 func1, 即 i2c4tp_sda 。
    在复用时,如果选择了 "default" (即 i2c 功能),系统会应用 i2c4_sda 和 i2c4_scl 这两个 pinctrl,最终将 GPIO7_C1 和 GPIO7_C2 两个针脚切换成对应的 i2c 功能;而如果选择了 "gpio" ,系统会应用 i2c4_gpio 这个 pinctrl,将 GPIO7_C1 和 GPIO7_C2 两个针脚还原为 GPIO 功能。
    我们看看 i2c 的驱动程序 /kernel/drivers/i2c/busses/i2c-rockchip.c 是如何切换复用功能的:

    static int rockchip_i2c_probe(struct platform_device *pdev)
    {
        struct rockchip_i2c *i2c = NULL;
        struct resource *res;
        struct device_node *np = pdev->dev.of_node;
        int ret;
    // ...
            i2c->sda_gpio = of_get_gpio(np, 0);
            if (!gpio_is_valid(i2c->sda_gpio)) {
                dev_err(&pdev->dev, "sda gpio is invalid
    ");
                return -EINVAL;
            }
            ret = devm_gpio_request(&pdev->dev, i2c->sda_gpio, dev_name(&i2c->adap.dev));
            if (ret) {
                dev_err(&pdev->dev, "failed to request sda gpio
    ");
                return ret;
            }
            i2c->scl_gpio = of_get_gpio(np, 1);
            if (!gpio_is_valid(i2c->scl_gpio)) {
                dev_err(&pdev->dev, "scl gpio is invalid
    ");
                return -EINVAL;
            }
            ret = devm_gpio_request(&pdev->dev, i2c->scl_gpio, dev_name(&i2c->adap.dev));
            if (ret) {
                dev_err(&pdev->dev, "failed to request scl gpio
    ");
                return ret;
            }
            i2c->gpio_state = pinctrl_lookup_state(i2c->dev->pins->p, "gpio");
            if (IS_ERR(i2c->gpio_state)) {
                dev_err(&pdev->dev, "no gpio pinctrl state
    ");
                return PTR_ERR(i2c->gpio_state);
            }
            pinctrl_select_state(i2c->dev->pins->p, i2c->gpio_state);
            gpio_direction_input(i2c->sda_gpio);
            gpio_direction_input(i2c->scl_gpio);
            pinctrl_select_state(i2c->dev->pins->p, i2c->dev->pins->default_state);
    // ...
    }

    首先是调用 of_get_gpio 取出设备树中 i2c4 结点的 gpios 属于所定义的两个 gpio:
    gpios = <&gpio7 GPIO_C1 GPIO_ACTIVE_LOW>, <&gpio7 GPIO_C2 GPIO_ACTIVE_LOW>;
    然后是调用 devm_gpio_request 来申请 gpio,接着是调用 pinctrl_lookup_state 来查找 “gpio” 状态,而默认状态 "default" 已经由框架保存到 i2c->dev-pins->default_state 中了。
    最后调用 pinctrl_select_state 来选择是 "default" 还是 "gpio" 功能。
    下面是常用的复用 API 定义:

    #include <linux/pinctrl/consumer.h>
    struct device {
    //...
    #ifdef CONFIG_PINCTRL
        struct dev_pin_info    *pins;
    #endif
    //...
    };
    struct dev_pin_info {
        struct pinctrl *p;
        struct pinctrl_state *default_state;
    #ifdef CONFIG_PM
        struct pinctrl_state *sleep_state;
        struct pinctrl_state *idle_state;
    #endif
    };
    struct pinctrl_state * pinctrl_lookup_state(struct pinctrl *p, const char *name);
    int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *s);
  • 相关阅读:
    深入理解CSS中的margin负值
    深入理解CSS浮动
    深入理解CSS绝对定位
    深入理解display属性
    JAVA-初步认识-第四章-内存空间的划分&栈内存&堆内存
    JAVA-初步认识-第四章-数组-概述和定义
    JAVA-初步认识-第四章-重载练习
    JAVA-初步认识-第四章-重载
    JAVA-初步认识-第四章-函数-内存加载过程
    JAVA-初步认识-第一章-整体的认识
  • 原文地址:https://www.cnblogs.com/debruyne/p/9754070.html
Copyright © 2011-2022 走看看