http://blog.csdn.net/sinat_16823063/article/details/53946549
Tensorflow创建和读取17flowers数据集
标签: tensorflow
分类:
近期开始学习tensorflow,看了很多视频教程以及博客,大多数前辈在介绍tensorflow的用法时都会调用官方文档里给出的数据集,但是对于我这样的小白来说,如果想训练自己的数据集,自己将图片转换成可以输入到网络中的格式确实是有难度。但如果不会做图片的预处理,迈不出这一步,今后的学习之路会越来越难走,所以今天还是硬着头皮把我这几天已经实现的部分做一个总结。主要参考了一篇博客,文章最后有链接,通过这位博主的方法我成功生成了自己的数据集。
首先,介绍一下用到的两个库,一个是os,一个是PIL。PIL(Python Imaging Library)是 Python 中最常用的图像处理库,而Image类又是 PIL库中一个非常重要的类,通过这个类来创建实例可以有直接载入图像文件,读取处理过的图像和通过抓取的方法得到的图像这三种方法。
我采用的数据集是17 Category Flower Dataset。17flowers是牛津大学Visual Geometry Group选取的在英国比较常见的17种花。其中每种花有80张图片,整个数据及有1360张图片,可以在官网下载。不过在后续的训练过程中遇到了过拟合的问题,稍后再解释。
由于17-flower数据集的结构如下图所示,标签就是最外层的文件夹的名字。所以在输入标签的时候可以直接通过文件读取的方式。
我们是通过TFRecords来创建数据集的,TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件(label)。
其中的filename,即刚刚通过TFReader来生成的训练集。通过将其转化成string类型数据,再通过reader来读取队列中的文件,并通过features的名字,‘label’和‘img_raw’来得到对应的标签和图片数据。之后就是一系列的转码和reshape的工作了。
- import os
- import tensorflow as tf
- from PIL import Image
- cwd = os.getcwd()
- classes = os.listdir(cwd+"/17flowers/jpg")
- writer = tf.python_io.TFRecordWriter("train.tfrecords")
- for index, name in enumerate(classes):
- class_path = cwd + "/17flowers/jpg/" + name + "/"
- if os.path.isdir(class_path):
- for img_name in os.listdir(class_path):
- img_path = class_path + img_name
- img = Image.open(img_path)
- img = img.resize((224, 224))
- img_raw = img.tobytes() #将图片转化为原生bytes
- example = tf.train.Example(features=tf.train.Features(feature={
- "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[int(name)])),
- 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
- }))
- writer.write(example.SerializeToString()) #序列化为字符串
- writer.close()
- print(img_name)
我们使用tf.train.Example来定义我们要填入的数据格式,其中label即为标签,也就是最外层的文件夹名字,img_raw为易经理二进制化的图片。然后使用tf.python_io.TFRecordWriter来写入。基本的,一个Example中包含Features,Features里包含Feature(这里没s)的字典。最后,Feature里包含有一个 FloatList, 或者ByteList,或者Int64List。就这样,我们把相关的信息都存到了一个文件中,所以前面才说不用单独的label文件。而且读取也很方便。
下面测试一下,已经存好的训练集是否可用:
- for serialized_example in tf.python_io.tf_record_iterator("train.tfrecords"):
- example = tf.train.Example()
- example.ParseFromString(serialized_example)
- image = example.features.feature['image'].bytes_list.value
- label = example.features.feature['label'].int64_list.value
- # 可以做一些预处理之类的
- print image, label
可以输出值,那么现在我们创建好的数据集已经存储在了统计目录下的train.tfrecords中了。接下来任务就是通过队列(queue)来读取这个训练集中的数据。
- def read_and_decode(filename):
- #根据文件名生成一个队列
- filename_queue = tf.train.string_input_producer([filename])
- reader = tf.TFRecordReader()
- _, serialized_example = reader.read(filename_queue)
- #返回文件名和文件
- features = tf.parse_single_example(serialized_example, features={
- 'label': tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string), })
- img = tf.decode_raw(features['img_raw'], tf.uint8)
- img = tf.reshape(img, [224, 224, 3])
- img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
- label = tf.cast(features['label'], tf.int64)
- return img, label
准备好了这些训练集,接下来就是利用得到的label和img进行网络的训练了。
- img, label = read_and_decode("train.tfrecords")
- img_batch, label_batch = tf.train.shuffle_batch([img, label],batch_size=100, capacity=2000, min_after_dequeue=1000)
- labels = tf.one_hot(label_batch,17,1,0)
- coord = tf.train.Coordinator()
- threads = tf.train.start_queue_runners(coord=coord,sess=sess)
- for i in range(200):
- batch_xs, batch_ys = sess.run([img_batch, labels])
- print(sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5}))
- print("Loss:", sess.run(cross_entropy,feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5}))
- if i % 50 == 0:
- print(compute_accuracy(mnist.test.images, mnist.test.labels))
- coord.request_stop()
- coord.join()
注意一点,由于这里使用了队列的方式来进行训练集的读取,所以异步方式,通过Coordinator让queue runner通过coordinator来启动这些线程,并在最后读取队列结束后终止线程。
不过,在训练这个训练集的过程中不断的输出loss函数值,发现只迭代了5次就为0了,目前想到的原因可能是训练集太小,每个类只有80张图片。另一个原因可能是网络结构太深,由于使用了VGGNet,训练参数太多,容易过拟合。下次做个小规模的网络测试一下。