zoukankan      html  css  js  c++  java
  • POJ 1163:The Triangle

    Description

    7
    3   8
    8   1   0
    2   7   4   4
    4   5   2   6   5
    
    (Figure 1)
    Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.

    Input

    Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.

    Output

    Your program is to write to standard output. The highest sum is written as an integer.

    Sample Input

    5
    7
    3 8
    8 1 0 
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    题解:最基础的dp,直接记录状态

            dp[i][j]表示以第i行第j列开头的三角形的最大值

            dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+a[i][j];

     (1) 从后向前递推

     1 #include<iostream>
     2 #include<algorithm>
     3 using namespace std;
     4 const int MAXN = 1001;
     5 int dp[MAXN][MAXN];
     6 int main()
     7 {
     8     int n;
     9     cin >> n;
    10     for (int i = 0; i < n;i++)
    11       for (int j = 0; j <= i; j++)
    12         cin >> dp[i][j];
    13     for (int i = n - 2; i >= 0;i--)
    14       for (int j = 0; j <= i; j++)
    15       {
    16           dp[i][j] = max(dp[i+1][j],dp[i+1][j+1]) + dp[i][j];
    17       }
    18       cout << dp[0][0];
    19     return 0;
    20 }

    (2) 从前向后递推

     1 #include<iostream>
     2 #include<algorithm>
     3 using namespace std;
     4 const int MAXN = 1001;
     5 int dp[MAXN][MAXN];
     6 int main()
     7 {
     8     int n;
     9     cin >> n;
    10     for (int i = 0; i < n;i++)
    11       for (int j = 0; j <= i; j++)
    12         cin >> dp[i][j];
    13     for (int i = 0; i < n;i++)
    14       for (int j = 0; j <= i; j++)
    15       {
    16           if (i==0)continue;
    17           else if (j == 0)dp[i][j] = dp[i-1][j] + dp[i][j];
    18           else if (j == i)dp[i][j] = dp[i-1][j-1] + dp[i][j];
    19           else dp[i][j] = max(dp[i-1][j],dp[i-1][j-1]) + dp[i][j];
    20       }
    21       int ans = 0;
    22       for (int j = 0; j < n; j++)
    23           ans = max(ans,dp[n-1][j]);
    24       cout << ans;
    25     return 0;
    26 }
  • 相关阅读:
    模式的作用就是解耦,解耦,再解耦,让事情变简单、可控制。
    系统的同构性分析
    “以客观事物(object)的形式来组织程序”
    String的indexOf()的三种情况
    关于finally关键字
    openSession和getCurrentSession的区别?
    eclipse括号跳转
    final修饰的类能不能创建一个对象
    使用svn从恢复到某个版本的时候会报错
    关于TableModel的中获取表格数据的问题
  • 原文地址:https://www.cnblogs.com/demian/p/6002459.html
Copyright © 2011-2022 走看看