zoukankan      html  css  js  c++  java
  • POJ 3126 Prime Path (素数+BFS)

    题意:给两个四位素数a和b,求从a变换到b的最少次数,每次变换只能变换一个数字并且变换的过程必须也是素数。

    思路:先打表求出四位长度的所有素数,然后利用BFS求解。从a状态入队,然后从个位往千位的顺序枚举下一个素数,入队,直到状态为b为止。

    #include <cstdio>
    #include <queue>
    #include <vector>
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    using namespace std;
    
    bool is_prime[10000];
    bool visited[10000];
    string a, b;
    void sieve() { // 埃式筛法
    	memset(is_prime, true, sizeof(is_prime));
    	is_prime[0] = is_prime[1] = false;
    	int n = 9999;
    	for (int i = 2; i <= n; ++i)
    	if (is_prime[i])
    	for (int j = 2 * i; j <= n; j += i) is_prime[j] = false;
    	return;
    }
    struct number {
    	string num;
    	int step;
    	number(string num, int step) : num(num), step(step) {}
    };
    void solve() {
    	int ans = 0;
    	memset(visited, false, sizeof(visited));
    	queue<number> que;
    	que.push(number(a, 0)); // 初始状态
    	while (!que.empty()) {
    		number p = que.front(); que.pop();
    		if (p.num == b) { // 到达目标。。
    			ans = p.step;
    			break;
    		}
    		for (int i = 3; i >= 0; --i) { // 从个位往千位枚举
    			int jbegin = i == 0 ? 1 : 0; // 千位的时候,从1开始枚举
    			string c = p.num;
    			for (int j = jbegin; j <= 9; ++j) {
    				c[i] = j + '0';
    				int next = atoi(c.c_str()); // 下一个数字
    				if (!visited[next] && is_prime[next] && c != p.num) {
    					visited[atoi(c.c_str())] = true;
    					que.push(number(c, p.step + 1));
    				}
    			}
    		}
    	}
    	cout << ans << endl;
    }
    int main()
    {
    	sieve(); 
    	int t;
    	cin >> t;
    	while (t--) {
    		cin >> a >> b;
    		solve();
    	}
    	return 0;
    }
  • 相关阅读:
    linux sed
    linux vim
    linux 文本处理
    Xception: Deep Learning with Depthwise Separable Convolutions
    Residual Attention Network for Image Classification
    ResNeXt:Aggregated Residual Transformations for Deep Neural Networks
    Densely Connected Convolutional Networks
    Deep Pyramidal Residual Networks
    SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
    Wide Residual Networks
  • 原文地址:https://www.cnblogs.com/demian/p/7406778.html
Copyright © 2011-2022 走看看