zoukankan      html  css  js  c++  java
  • sklearn.utils.shuffle-训练数据打乱的最佳方法

      在进行模型训练前,我们要将数据打乱,以获得更好的训练效果。可以使用sklearn.utils中的shuffle,获得打乱后的数据索引,最后,迭代生成打乱后的batch数据,一个写好的模块如下。

      思路是:1.先shuffle  2.再迭代生成

     1 def fill_feed_dict(data_X, data_Y, batch_size):
     2     """Generator to yield batches"""
     3     # Shuffle data first.
     4     shuffled_X, shuffled_Y = shuffle(data_X, data_Y)
     5     # print("before shuffle: ", data_Y[:10])
     6     # print(data_X.shape[0])
     7     # perm = np.random.permutation(data_X.shape[0])
     8     # data_X = data_X[perm]
     9     # shuffled_Y = data_Y[perm]
    10     # print("after shuffle: ", shuffled_Y[:10])
    11     for idx in range(data_X.shape[0] // batch_size):
    12         x_batch = shuffled_X[batch_size * idx: batch_size * (idx + 1)]
    13         y_batch = shuffled_Y[batch_size * idx: batch_size * (idx + 1)]
    14         yield x_batch, y_batch
  • 相关阅读:
    2017普及组D1T3 洛谷P3956 棋盘
    2017提高组D1T1 洛谷P3951 小凯的疑惑
    Title
    Title
    Title
    Title
    Title
    Title
    Title
    Title
  • 原文地址:https://www.cnblogs.com/demo-deng/p/10167023.html
Copyright © 2011-2022 走看看