zoukankan      html  css  js  c++  java
  • word2vec生成词向量和字向量

    生成字符向量的过程中需要注意:

    1)在收集数据生成corpus时候,通过Word2Vec生成字向量的时候,产生了“ ”空格字符向量,但是加载模型是不会成功的。那么你不是生成的binary文件,就可以修改此文件,更改或删除。

    示例参考代码如下:

    import os
    import gensim
    from gensim.models import word2vec
    from sklearn.decomposition import PCA
    import numpy as np
    
    import logging
    logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s', level=logging.INFO)
    
    class TrainVector:
        def __init__(self):
            cur = '/'.join(os.path.abspath(__file__).split('/')[:-1])
            # 训练语料所在目录
            self.token_filepath = os.path.join(cur, 'train_data/token_train.txt')
            self.pinyin_filepath = os.path.join(cur, 'train_data/pinyin_train.txt')
            self.postag_filepath = os.path.join(cur, 'train_data/postag_train.txt')
            self.dep_filepath = os.path.join(cur, 'train_data/dep_train.txt')
            self.word_filepath = os.path.join(cur, 'train_data/word_train.txt')
    
            # 向量文件所在目录
            self.token_embedding = os.path.join(cur, 'model/token_vec_300.bin')
            self.postag_embedding = os.path.join(cur, 'model/postag_vec_30.bin')
            self.dep_embedding = os.path.join(cur, 'model/dep_vec_10.bin')
            self.pinyin_embedding = os.path.join(cur, 'model/pinyin_vec_300.bin')
            self.word_embedding = os.path.join(cur, 'model/word_vec_300.bin')
    
            #向量大小设置
            self.token_size = 300
            self.pinyin_size = 300
            self.dep_size = 10
            self.postag_size = 30
            self.word_size = 300
    
    
        '''基于gensimx训练字符向量,拼音向量,词性向量'''
        def train_vector(self, train_path, embedding_path, embedding_size):
            sentences = word2vec.Text8Corpus(train_path)  # 加载分词语料
            model = word2vec.Word2Vec(sentences, size=embedding_size, window=5, min_count=5)  # 训练skip-gram模型,默认window=5
            model.wv.save_word2vec_format(embedding_path, binary=False)
    
        '''基于特征共现+pca降维的依存向训练'''
        def train_dep_vector(self, train_path, embedding_path, embedding_size):
            f_embedding = open(embedding_path, 'w+')
            deps = ['SBV', 'COO', 'ATT', 'VOB', 'FOB', 'IOB', 'POB', 'RAD', 'ADV', 'DBL', 'CMP', 'WP', 'HED', 'LAD']
            weight_matrix = []
            for dep in deps:
                print(dep)
                weights = []
                for line in open(train_path):
                    line = line.strip().split('	')
                    dep_dict = {i.split('@')[0]:int(i.split('@')[1]) for i in line[1].split(';')}
                    sum_tf = sum(dep_dict.values())
                    dep_dict = {key:round(value/sum_tf,10) for key, value in dep_dict.items()}
                    weight = dep_dict.get(dep, 0.0)
                    weights.append(str(weight))
                weight_matrix.append(weights)
            weight_matrix = np.array(weight_matrix)
            pca = PCA(n_components = embedding_size)
            low_embedding = pca.fit_transform(weight_matrix)
            for index, vecs in enumerate(low_embedding):
                dep = deps[index]
                vec = ' '.join([str(vec) for vec in vecs])
                f_embedding.write(dep + ' ' + vec + '
    ')
            f_embedding.close()
    
        '''训练主函数'''
        def train_main(self):
            #训练依存向量
            self.train_dep_vector(self.dep_filepath, self.dep_embedding, self.dep_size)
            #训练汉字字向量
            self.train_vector(self.token_filepath, self.token_embedding, self.token_size)
            #训练汉语词性向量
            self.train_vector(self.postag_filepath, self.postag_embedding, self.postag_size)
            #训练汉语词向量
            self.train_vector(self.word_filepath, self.word_embedding, self.word_size)
            # 训练汉语拼音向量
            self.train_vector(self.pinyin_filepath, self.pinyin_embedding, self.pinyin_size)
            return
    
    if __name__ == '__main__':
        handler = TrainVector()
        handler.train_main()
  • 相关阅读:
    Linux与Windows区别——总结中
    Linux改变文件属性与权限
    Linux文件属性与权限
    数据库范式
    JavaScript基础:逻辑运算符——&&和||(短路判断)和!
    JavaScript基础:比较运算符——==与 ===;!=与!==
    JavaScript基础:字符串转换函数——String()和toString()
    Angular7 HttpClient处理多个请求
    javascript对象引用与赋值
    SASS用法指南
  • 原文地址:https://www.cnblogs.com/demo-deng/p/10675255.html
Copyright © 2011-2022 走看看