zoukankan      html  css  js  c++  java
  • pytorch-MNIST数据模型测试

    用pytorch搭建一个DNN网络,主要目的是熟悉pytorch的使用

    """
        test Function
    """
    
    import torch
    from torch import nn, optim
    from torch.autograd import Variable
    from torch.utils.data import DataLoader
    from torchvision import datasets, transforms
    
    class simpleNet(nn.Module):
        ''' define the 3 layers Network'''
        def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
            super(simpleNet, self).__init__()
            self.layer1 = nn.Linear(in_dim, n_hidden_1)
            self.layer2 = nn.Linear(n_hidden_1, n_hidden_2)
            self.layer3 = nn.Linear(n_hidden_2, out_dim)
    
        def forward(self, x):
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            return x
    
    class Activation_Net(nn.Module):
        def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
            super(Activation_Net, self).__init__()
            self.layer1 = nn.Sequential(
                nn.Linear(in_dim, n_hidden_1), nn.ReLU(True)
            )
            self.layer2 = nn.Sequential(
                nn.Linear(n_hidden_1, n_hidden_2), nn.ReLU(True)
            )
            self.layer3 = nn.Sequential(
                nn.Linear(n_hidden_2, out_dim)
            )
    
        def forward(self, x):
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            return x
    
    
    class Batch_Net(nn.Module):
        def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
            super(Batch_Net, self).__init__()
            self.layer1 = nn.Sequential(
                nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1) ,nn.ReLU(True)
            )
            self.layer2 = nn.Sequential(
                nn.Linear(n_hidden_1,n_hidden_2), nn.BatchNorm1d(n_hidden_2), nn.ReLU(True)
            )
            self.layer3 = nn.Sequential(
                nn.Linear(n_hidden_2, out_dim)
            )
    
        def forward(self, x):
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            return x
    
    batch_size = 64
    learning_rate = 1e-2
    num_epochs = 20
    
    data_tf = transforms.Compose(
        [transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
    )
    
    train_dataset = datasets.MNIST(root='./data', train=True, transform=data_tf, download=True)
    test_dataset = datasets.MNIST(root='./data', train=False, transform=data_tf)
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    
    model = Batch_Net(28*28, 300, 100, 10)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=learning_rate)
    
    # Training
    epoch = 0
    for data in train_loader:
        img, label = data
        img = img.view(img.size(0), -1)
        img = Variable(img)
        label = Variable(label)
        out = model(img)
        loss = criterion(out, label)
        print_loss = loss.data.item()
    
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        epoch += 1
        if epoch % 50 == 0:
            print('epoch:{}, loss:{:.4f}'.format(epoch, loss.data.item()))
    
    # Evalue
    model.eval()    # turn the model to test pattern, do some as dropout, batchNormalization
    eval_loss = 0
    eval_acc = 0
    for data in test_loader:
        img, label = data
        img = img.view(img.size(0), -1)
        img = Variable(img)  # 前向传播不需要保留缓存,释放掉内存,节约内存空间
        label = Variable(label)
        out = model(img)
        loss = criterion(out, label)
    
        eval_loss += loss.data * label.size(0)
        _, pred = torch.max(out, 1)     # 返回每一行中最大值和对应的索引
        s = (pred == label)
        num_correct = (pred == label).sum()
        eval_acc += num_correct.data.item()
    print('Test Loss:{:6f}, Acc:{:.6f}'.format(eval_loss/len(test_dataset), eval_acc/len(test_dataset)))

  • 相关阅读:
    (Vue中)cehart在同一个dom上画图图切换时饼图有折线图的坐标系
    linux(centos7)修改服务器时间
    centos6 yum源不能使用
    Linux 使用 history 来减少重复命令的几个实用技巧。
    7个Shell 拿来就用脚本实例!
    keepalived的配置解析&安装与爬坑
    linux最全命令使用手册
    linux各种误删文件恢复方法(经典强推)
    位运算符
    SQL 书写、执行顺序
  • 原文地址:https://www.cnblogs.com/demo-deng/p/10678713.html
Copyright © 2011-2022 走看看