zoukankan      html  css  js  c++  java
  • Google词向量word2vec的使用

     1 """
     2     1.在自然语言处理中常常使用预训练的word2vec,这个预训练的词向量可以使用google的GoogleNews-vectors-negative300.bin
     3     2.GoogleNews-vectors-negative300.bin是训练好的300维的新闻语料词向量
     4     3.本函数的作用就是把一个词转换成词向量,以供我们后期使用。没有在该word2vec中的词采用其他的方式构建,如采用均匀分布或者高斯分布等随机初始化
     5 """
     6 import numpy as np
     7 
     8 
     9 # loads 300x1 word vectors from file.
    10 def load_bin_vec(fname, vocab):
    11     word_vecs = {}
    12     with open(fname, "rb") as f:
    13         header = f.readline()
    14         vocab_size, layer1_size = map(int, header.split()) # 3000000 300
    15         binary_len = np.dtype('float32').itemsize * layer1_size # 1200
    16         for line in range(vocab_size):
    17             word = []
    18             while True:
    19                 ch = f.read(1)
    20                 if ch == ' ':
    21                     word = ''.join(word)
    22                     break
    23                 if ch != '
    ':
    24                     word.append(ch)
    25             if word in vocab:
    26                 word_vecs[word] = np.fromstring(f.read(binary_len), dtype='float32')
    27             else:
    28                 f.read(binary_len)
    29     return word_vecs
    30 
    31 
    32 # add random vectors of unknown words which are not in pre-trained vector file.
    33 # if pre-trained vectors are not used, then initialize all words in vocab with random value.
    34 def add_unknown_words(word_vecs, vocab, min_df=1, k=300):
    35     for word in vocab:
    36         if word not in word_vecs and vocab[word] >= min_df:
    37             word_vecs[word] = np.random.uniform(-0.25, 0.25, k)
    38 
    39 
    40 vectors_file = './GoogleNews-vectors-negative300.bin'
    41 vocab = ['I', 'can', 'do']
    42 
    43 vectors = load_bin_vec(vectors_file, vocab)  # pre-trained vectors
    44 add_unknown_words(vectors, vocab)
    45 print(vectors['I'])
    46 print('*'*40)
    47 print(vectors['can'])
    48 print('*'*40)
    49 print(vectors['do'])
  • 相关阅读:
    java 实现一段文字中,出现次数最多的字
    json 字符串 <----> json 对象
    农场销售
    IDEA Tomcat配置 VM Option
    java用JSONObject生成json
    面向对象
    java读取 properties配置文件
    Jquery span标签的取值赋值
    Oracle 分析函数 over
    gitee指令集合
  • 原文地址:https://www.cnblogs.com/demo-deng/p/9705108.html
Copyright © 2011-2022 走看看