zoukankan      html  css  js  c++  java
  • 八数码块

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as: 
     1  2  3  4 
    5 6 7 8
    9 10 11 12
    13 14 15 x

    where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle: 
     1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 
    5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
    9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
    13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
    r-> d-> r->

    The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. 

    Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 
    frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). 

    In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 
    arrangement. 

    Input

    You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle 
     1  2  3 
    x 4 6
    7 5 8

    is described by this list: 

    1 2 3 x 4 6 7 5 8

    Output

    You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

    Sample Input

     2  3  4  1  5  x  7  6  8 

    Sample Output

    ullddrurdllurdruldr

      1 #include<iostream>
      2 #include<cstring>
      3 #include<cstdio>
      4 #define MAXN 500000
      5 using namespace std;
      6 char input[30];
      7 int state[9], goal[9] = {1,2,3,4,5,6,7,8,0};
      8 int dir[4][2] = {{-1,0},{1,0},{0,-1},{0,1}}; // 上,下,左, 右
      9 char path_dir[5] = "udlr";
     10 int st[MAXN][9];
     11 int father[MAXN], path[MAXN]; // 保存打印路径
     12 
     13 const int MAXHASHSIZE = 1000003;
     14 int head[MAXHASHSIZE], next[MAXN];
     15 
     16 void init_lookup_table() { memset(head, 0, sizeof(head)); }
     17 
     18 typedef int State[9];
     19 int hash(State& s) {
     20   int v = 0;
     21   for(int i = 0; i < 9; i++) v = v * 10 + s[i];
     22   return v % MAXHASHSIZE;
     23 
     24 }
     25 
     26 int try_to_insert(int s) {
     27   int h = hash(st[s]);
     28   int u = head[h];
     29   while(u) {
     30     if(memcmp(st[u], st[s], sizeof(st[s])) == 0) return 0;
     31     u = next[u];
     32   }
     33   next[s] = head[h];
     34   head[h] = s;
     35   return 1;
     36 }
     37 
     38 int bfs(){
     39     init_lookup_table();
     40     father[0] = path[0] = -1;
     41     int front=0, rear=1;
     42     memcpy(st[0], state, sizeof(state));
     43     
     44     while(front < rear){
     45         int *s = st[front];
     46        
     47         if(memcmp(s, goal, sizeof(goal))==0){
     48             return front;
     49         }
     50 
     51         int j;
     52         for(j=0; j<9; ++j) if(!s[j])break; // 找出0的位置
     53         int x=j/3, y=j%3;     // 转换成行,列
     54         
     55         for(int i=0; i<4; ++i){
     56 
     57             int dx = x+dir[i][0]; // 新状态的行,列
     58             int dy = y+dir[i][1];
     59             int pos = dx*3+dy;    // 目标的位置
     60 
     61             if(dx>=0 && dx<3 && dy>=0 && dy<3){
     62                 int *newState = st[rear];
     63                 memcpy(newState, s, sizeof(int)*9);
     64                 newState[j] = s[pos];
     65                 newState[pos] = 0;
     66                 if(try_to_insert(rear)){
     67                     father[rear] = front;  path[rear] = i;
     68                     rear++;
     69                 }
     70             }
     71         } 
     72         front++;
     73     }
     74     return -1;
     75 }
     76 
     77 void print_path(int cur){
     78     if(cur!=0){
     79         print_path(father[cur]);
     80         printf("%c", path_dir[path[cur]]);
     81     }
     82 }
     83 
     84 int main(){
     85     
     86     while(gets(input)){
     87         // 转换成状态数组, 'x'用0代替
     88         for(int pos=0, i=0; i<strlen(input); ++i){
     89             if(input[i]>='0' && input[i]<='9')
     90                 state[pos++] = input[i]-'0';
     91             else if(input[i]=='x')
     92                 state[pos++] = 0;
     93         }
     94         int ans;
     95         if((ans=bfs())!=-1){ 
     96             print_path(ans);
     97             printf("
    ");
     98         }
     99     }        
    100 }
    View Code
  • 相关阅读:
    拓扑排序学习
    快速排序+归并排序
    邻接表的两种实现(链表和数组模拟)
    一起学Windows Phone7开发(十四.一 Phone Task)
    一起学Windows Phone7开发(十四.四 Web Task)
    一起学Windows Phone7开发(十四.三 Multimedia Task)
    一起学Windows Phone7开发(十五. Device)
    一起学Windows Phone7开发(十四.五 Market Task)
    深入学习Windows Phone7(三. Visual State Manager)
    深入学习Windows Phone7(一. Reactive Extension)
  • 原文地址:https://www.cnblogs.com/demodemo/p/4678422.html
Copyright © 2011-2022 走看看