zoukankan      html  css  js  c++  java
  • 最大子矩阵和

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15

    DP 求最大和子矩阵 , 可以用最大和连续子序列的思路解 .

    首先 , 读数据的时候 a[i][j] 为前 i 行数据的第 j 个数的和 , 当求第 p 行到第 q 行之间宽为 p-q+1 的最大和矩阵的时候, 就以 p 行和 q 行之间的同一列的数字的和作为一个数列的元素 , 然后 DP 求这个数列的最大和连续子序列 , 就是第p 行到第 q 行之间宽为 p-q+1 的最大和矩阵 .

    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int INF=999999999;
    int n,m;
    int d[110][110];
    int s[110];
    int main(){
        int i,j,k,t;
        while(scanf("%d",&n)!=EOF){
            for(i=1;i<=n;i++) for(j=1;j<=n;j++) scanf("%d",&d[i][j]);
            m=-INF;
            for(i=1;i<=n;i++){
                memset(s,0,sizeof(s));
                for(j=i;j<=n;j++){
                    t=0;
                    for(k=1;k<=n;k++){
                        s[k]+=d[j][k];
                        if(t<=0) t=s[k];
                        else t+=s[k];
                        if(t>m)m=t;
                    }
                }
            }
            printf("%d
    ",m);
        }
    return 0;
    }
    View Code
  • 相关阅读:
    Express入门
    nodejs入门
    css实现点点点效果
    定时器详解和应用、js加载阻塞、css加载阻塞
    栈内存和堆内存有什么区别?
    webpack入门
    Ubuntu常用命令集合
    HTTP缓存机制
    125. 验证回文字符串
    算法的时间复杂度和空间复杂度(js版)
  • 原文地址:https://www.cnblogs.com/demodemo/p/4732558.html
Copyright © 2011-2022 走看看