Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
DP 求最大和子矩阵 , 可以用最大和连续子序列的思路解 .
首先 , 读数据的时候 a[i][j] 为前 i 行数据的第 j 个数的和 , 当求第 p 行到第 q 行之间宽为 p-q+1 的最大和矩阵的时候, 就以 p 行和 q 行之间的同一列的数字的和作为一个数列的元素 , 然后 DP 求这个数列的最大和连续子序列 , 就是第p 行到第 q 行之间宽为 p-q+1 的最大和矩阵 .
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include<cstdio> #include<cstring> using namespace std; const int INF=999999999; int n,m; int d[110][110]; int s[110]; int main(){ int i,j,k,t; while(scanf("%d",&n)!=EOF){ for(i=1;i<=n;i++) for(j=1;j<=n;j++) scanf("%d",&d[i][j]); m=-INF; for(i=1;i<=n;i++){ memset(s,0,sizeof(s)); for(j=i;j<=n;j++){ t=0; for(k=1;k<=n;k++){ s[k]+=d[j][k]; if(t<=0) t=s[k]; else t+=s[k]; if(t>m)m=t; } } } printf("%d ",m); } return 0; }