zoukankan      html  css  js  c++  java
  • 多起点的局部搜索算法(multi-start local search)解决TSP问题(附Java代码及注释)


    以下文章来源于数据魔术师 ,作者向柯玮

    前言

    各位看客老爷们,大家好~

    今天要为大家带来的干货是multi-start local search算法解决TSP问题(Java的实现)。

    大家可不要因为这个算法的名字比较长,就觉得这个这个算法很难,其实没有哦-

    这个算法还是非常简单的,希望大家能够通过这个简单的算法来了解面对NP-hard问题,我们可以采取的策略是什么。

    算法简介

    这个算法,其实大家通过名字就可以知道,一定和Iterated local search(迭代局部搜索算法)存在一定的联系。

    (这是当然呀,名字都差不多,还需要你说吗?)

    迭代局部搜索算法公众号在之前已经介绍过了,有兴趣的小伙伴可以再看看~

    干货|迭代局部搜索算法(Iterated local search)探幽(附C++代码及注释)

    这两个算法相似的地方我们就不多说了。我们主要介绍这个算法优势之处。

    优势

    这种算法,他是多起点的,初始解的生成和遗传算法挺类似的。

    通过随机打乱,生成多个随机新解,以此来增大达到最优解的目的。

    可能大家光这么看,没啥感觉,我们可以通过数学公式来让大家直观的感受一下。

    我们认为有N个城市,令传统的LS搜索的次数为A,传统的MLS搜索次数为A',改进过的MLS搜索次数为A'',可以容易得出下面的公式。

    现在让我们再来看看实际的程序跑出来的结果。

    这是传统的LS。

    这是传统的MLS。

    这是咱们优化过的MLS。

    从以上两个例子我们可以看出,MLS确实能够提高单次程序运行获得优质解的概率。

    那么,下面就让我们简单地总结一下MLS的一些优点。

    • 如果是在多线程情况下进行探索,那么速度和LS是差不多的
    • 探寻到最优解的概率更大了
    • 对于新手来说,也可以更好的学习这种多个初始解的思想,便于以后GA等算法的学习

    虽然本次代码的展示仍然是采用单线程,但是只要单线程的明白了,多线程其实很容易就变过去了。

    算法流程分析

    现在我们先来介绍介绍最普遍的一种multi-start local search(多起点的局部搜索算法)。

    大致的流程就是上面这副图一样,在读取数据之后生成第一个解,即按照0-1-2-3……排序的解。

    然后将这个解进行打乱,生成N组解,然后分别对这N组解利用2-opt算子进行邻域搜索。

    我个人感觉这一种multi-start local search算法并不是很好。

    • 都是采用的多线程操作,对于新手都不是很友好,代码不大看得明白
    • 算子太少,单一的2-opts算子很难找到较好的解
    • 对一些比较差的初始解(通过邻域搜索都无法找到更好的解),没有进行一些处理

    鉴于上面的不足,我对这个算法进行了一定程度的改进。如下图。

    代码解析

    在上面,我们大致的介绍了本次算法的大致实现过程。

    接下来,我们对部分代码进行解读

    启动函数

    这个函数是我们的main函数,我们在这里完成我们所有的操作。

    我们在iter函数中完成我们的搜索过程。

    public class launch {
        public static void main(String[] args) {
            mls my_solution=new mls();                                      //生成mls对象
            readfile my_file=new readfile();                                //读取文件
            my_file.buildInstance("F:\mls\data\uy734.tsp.txt");          //读取文件
            my_solution.setiLSInstance(my_file.getInstance());              //设置好距离矩阵
            my_solution.setsolution();                                      //设置好初始解
            my_solution.iter();                                             //开始迭代
            my_solution.print_best();                                       //输出最优解
            System.out.println("最佳适应度为:"+my_solution.print_of());      //输出最佳适应度
    
        }
    }
    
    

    iter函数

    这个函数就是最主要的函数,相当于整个搜索的过程的启动器。

    我们在这个函数中,每次生成一个新的随机解,然后进行邻域搜索。这个就是区别于LS的根本之处

    并用'tihuan'作为改随机解是否为一个较好解的标志。

     public void iter() {
            for(int c=0;c<this.iLSInstance.getN();c++)
            {
                Solution localsolution2 = this.currBest.clone();
                for (int j = c; j < this.iLSInstance.getN(); j++) {
                    Solution now = ls(localsolution2.clone(), j);
                    if (now.getOF() < this.dLSGlobalBest.getOF())
                        this.dLSGlobalBest = now.clone();
                }
            }
            for (int i = 0; i < this.iLSInstance.getN(); i++) {
                tihuan=false;
                Solution localsolution = this.currBest.clone();
                localsolution=restart(localsolution);
                for (int j = 0; j < this.iLSInstance.getN(); j++) {
                    Solution now = ls(localsolution.clone(), j);
                    if (now.getOF() < this.dLSGlobalBest.getOF())
                        this.dLSGlobalBest = now.clone();
                }
                for(int m=0;m<this.iLSInstance.getN()-1;m++)
                    System.out.print(localsolution.getsolution().get(m)+"-->");
                System.out.println(localsolution.getsolution().get(this.iLSInstance.getN()-1));
                if(!tihuan)
                    step++;
                if(step==50)
                {
                    i--;
                    step=0;
                }
    
            }
        }
    
    

    LS函数

    LS函数,即local search函数,我们通过这个函数,完成我们对每组解的每个位置的城市的邻域搜索操作。

    并用‘tihuan’作为是否生成更好的解(这里是指生成比当前随机解好的解)的标志。image

    public Solution ls(Solution ssolution,int i)  {
                Solution best = ssolution.clone();
            for (int j = i + 1; j < this.iLSInstance.getN() +i; j++) {
                    Solution now=ssolution.clone();
                    if(j<this.iLSInstance.getN()){
                    now.swap(i, j);
                    now.setOF(this.cLSCalculator.calc(this.iLSInstance, now));
                    if (now.getOF() < best.getOF()) {
                        best = now.clone();
                        tihuan=true;
                    }
                    if(!tihuan){
                        now.swap(i,j);
                        now.relocate(i,j);
                        now.setOF(this.cLSCalculator.calc(this.iLSInstance, now));
                        if (now.getOF() < best.getOF()) {
                            best = now.clone();
                            tihuan=true;
                        }
                    }
                }
                    else if(j-this.iLSInstance.getN()<i){
                    now.relocate(i,j-i);
                    now.setOF(this.cLSCalculator.calc(this.iLSInstance, now));
                    if (now.getOF() < best.getOF()) {
                        best = now.clone();
                        tihuan=true;
                        }
                    }
    
            }
            return best;
        }
    
    

    restart函数

    这个是我们用来生成随机新解的函数。

    image

      public Solution restart(Solution solution){
            int[]haveset=new int[iLSInstance.getN()];
            haveset[0]=0;
            for(int i=0;i<iLSInstance.getN();i++){
                int n=rLSRandom.nextInt(iLSInstance.getN());
                while (haveset[n]!=0)
                    n=rLSRandom.nextInt(iLSInstance.getN());
                solution.getsolution().set(i,n);
                haveset[n]=1;
            }
            solution.setOF(this.cLSCalculator.calc(this.iLSInstance, solution));
            return solution;
        }
    
    

    小结

    好了,我们现在把算法的大致流程,主要的代码都展示了一下,大家可以把自己的data输进去,看看结果怎么样,T^T,小玮得到的结果都不是很理想--

    该算法的随机性很大,获得优质解的难度还是蛮大的。

    但是我觉得这个算法从传统LS变过来给了我们很多启发,比如说,在寻求最优解的时候,我们可以采用多线程来提高寻求最优解的效率等等。

    我希望大家通过本次推文,能够了解到邻域解是如何产生的,以及算法不够好时的我们可以采用哪些改进。

    那么在下一次的推文中,会介绍一种船新的组合优化解决VRPTW的算法~让我们一起期待吧!

    本篇推文代码请在公众号后台回复【MLS代码】获取(不用输入【】)

  • 相关阅读:
    WinForm简单的打包和部署
    C#实现获取枚举的描述
    C#实现序列化对象到XML文档与反序列化
    cookie与session的区别与联系
    windows环境下创建多个Redis实例
    struts2中的constant配置详解
    PowerDesigner使用教程
    配置JAVA环境变量
    CAS实现SSO单点登录原理
    OVER(PARTITION BY)函数用法
  • 原文地址:https://www.cnblogs.com/dengfaheng/p/12672823.html
Copyright © 2011-2022 走看看