zoukankan      html  css  js  c++  java
  • jdk源码剖析二: 对象内存布局、synchronized终极原理

     很多人一提到锁,自然第一个想到了synchronized,但一直不懂源码实现,现特地追踪到C++层来剥开synchronized的面纱。

    网上的很多描述大都不全,让人看了不够爽,看完本章,你将彻底了解synchronized的核心原理。

    一、启蒙知识预热

    开启本文之前先介绍2个概念

    1.1.cas操作

    为了提高性能,JVM很多操作都依赖CAS实现,一种乐观锁的实现。本文锁优化中大量用到了CAS,故有必要先分析一下CAS的实现。

    CAS:Compare and Swap。

    JNI来完成CPU指令的操作:

    unsafe.compareAndSwapInt(this, valueOffset, expect, update);

    CAS有3个操作数,内存值V,旧的预期值A,要修改的新值B。如果A=V,那么把B赋值给V,返回V;如果A!=V,直接返回V。

    打开源码:openjdkhotspotsrcoscpuwindowsx86vm atomicwindowsx86.inline.hpp,如下图:0

    os::is_MP()  这个是runtime/os.hpp,实际就是返回是否多处理器,源码如下:

    如上面源代码所示(看第一个int参数即可),LOCK_IF_MP:会根据当前处理器的类型来决定是否为cmpxchg指令添加lock前缀。如果程序是在多处理器上运行,就为cmpxchg指令加上lock前缀(lock cmpxchg)。反之,如果程序是在单处理器上运行,就省略lock前缀(单处理器自身会维护单处理器内的顺序一致性,不需要lock前缀提供的内存屏障效果)。

    1.2.对象头

    HotSpot虚拟机中,对象在内存中存储的布局可以分为三块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。

    HotSpot虚拟机的对象头(Object Header)包括两部分信息:

    第一部分"Mark Word":用于存储对象自身的运行时数据, 如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等等.

    第二部分"Klass Pointer":对象指向它的类的元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。(数组,对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是从数组的元数据中无法确定数组的大小。 )

    32位的HotSpot虚拟机对象头存储结构:(下图摘自网络)

                                                                  图1 32位的HotSpot虚拟机对象头Mark Word组成

    为了证实上图的正确性,这里我们看openJDK--》hotspot源码markOop.hpp,虚拟机对象头存储结构:

                                                 图2 HotSpot源码markOop.hpp中注释

    单词解释:

    hash: 保存对象的哈希码
    age: 保存对象的分代年龄
    biased_lock: 偏向锁标识位
    lock: 锁状态标识位
    JavaThread*: 保存持有偏向锁的线程ID
    epoch: 保存偏向时间戳

    上图中有源码中对锁标志位这样枚举

    1 enum {   locked_value             = 0,//00 轻量级锁
    2          unlocked_value           = 1,//01 无锁
    3          monitor_value            = 2,//10 监视器锁,也叫膨胀锁,也叫重量级锁
    4          marked_value             = 3,//11 GC标记
    5          biased_lock_pattern      = 5 //101 偏向锁
    6   };

    下面是源码注释:

                                            图3 HotSpot源码markOop.hpp中锁标志位注释

    看图3,不管是32/64位JVM,都是1bit偏向锁+2bit锁标志位。上面红框是偏向锁(第一行是指向线程的显示偏向锁,第二行是匿名偏向锁)对应枚举biased_lock_pattern,下面红框是轻量级锁、无锁、监视器锁、GC标记,分别对应上面的前4种枚举。我们甚至能看见锁标志11时,是GC的markSweep(标记清除算法)使用的。(这里就不再拓展了)

    对象头中的Mark Word,synchronized源码实现就用了Mark Word来标识对象加锁状态。

    二、JVM中synchronized锁实现原理(优化)

    大家都知道java中锁synchronized性能较差,线程会阻塞。本节将以图文形式来描述JVM的synchronized锁优化。

    在jdk1.6中对锁的实现引入了大量的优化来减少锁操作的开销:

    锁粗化(Lock Coarsening):将多个连续的锁扩展成一个范围更大的锁,用以减少频繁互斥同步导致的性能损耗。
    
    锁消除(Lock Elimination):JVM及时编译器在运行时,通过逃逸分析,如果判断一段代码中,堆上的所有数据不会逃逸出去从来被其他线程访问到,就可以去除这些锁。
    
    轻量级锁(Lightweight Locking):JDK1.6引入。在没有多线程竞争的情况下避免重量级互斥锁,只需要依靠一条CAS原子指令就可以完成锁的获取及释放。
    
    偏向锁(Biased Locking):JDK1.6引入。目的是消除数据再无竞争情况下的同步原语。使用CAS记录获取它的线程。下一次同一个线程进入则偏向该线程,无需任何同步操作。
    
    适应性自旋(Adaptive Spinning):为了避免线程频繁挂起、恢复的状态切换消耗。产生了忙循环(循环时间固定),即自旋。JDK1.6引入了自适应自旋。自旋时间根据之前锁自旋时间和线程状态,动态变化,用以期望能减少阻塞的时间。

     锁升级:偏向锁--》轻量级锁--》重量级锁

    2.1.偏向锁

      按照之前的HotSpot设计,每次加锁/解锁都会涉及到一些CAS操作(比如对等待队列的CAS操作),CAS操作会延迟本地调用,因此偏向锁的想法是一旦线程第一次获得了监视对象,之后让监视对象“偏向”这个线程,之后的多次调用则可以避免CAS操作。
      简单的讲,就是在锁对象的对象头(开篇讲的对象头数据存储结构)中有个ThreaddId字段,这个字段如果是空的,第一次获取锁的时候,就将自身的ThreadId写入到锁的ThreadId字段内,将锁头内的是否偏向锁的状态位置1.这样下次获取锁的时候,直接检查ThreadId是否和自身线程Id一致,如果一致,则认为当前线程已经获取了锁,因此不需再次获取锁,略过了轻量级锁和重量级锁的加锁阶段。提高了效率。
    注意:当锁有竞争关系的时候,需要解除偏向锁,进入轻量级锁。

    每一个线程在准备获取共享资源时:

    第一步,检查MarkWord里面是不是放的自己的ThreadId ,如果是,表示当前线程是处于 “偏向锁”.跳过轻量级锁直接执行同步体。

    获得偏向锁如下图:

    2.2.轻量级锁和重量级锁

    如上图所示:

    第二步,如果MarkWord不是自己的ThreadId,锁升级,这时候,用CAS来执行切换,新的线程根据MarkWord里面现有的ThreadId,通知之前线程暂停,之前线程将Markword的内容置为空。

    第三步,两个线程都把对象的HashCode复制到自己新建的用于存储锁的记录空间,接着开始通过CAS操作,把共享对象的MarKword的内容修改为自己新建的记录空间的地址的方式竞争MarkWord.

    第四步,第三步中成功执行CAS的获得资源,失败的则进入自旋.

    第五步,自旋的线程在自旋过程中,成功获得资源(即之前获的资源的线程执行完成并释放了共享资源),则整个状态依然处于轻量级锁的状态,如果自旋失败 第六步,进入重量级锁的状态,这个时候,自旋的线程进行阻塞,等待之前线程执行完成并唤醒自己.

    注意点:JVM加锁流程

    偏向锁--》轻量级锁--》重量级锁

    从左往右可以升级,从右往左不能降级

    三、从C++源码看synchronized

    前两节讲了synchronized锁实现原理,这一节我们从C++源码来剖析synchronized。

    3.1 同步和互斥

    同步:多个线程并发访问共享资源时,保证同一时刻只有一个(信号量可以多个)线程使用。

    实现同步的方法有很多,常见四种如下:

    1)临界区(CriticalSection,又叫关键段):通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。进程内可用。

    2)互斥量:互斥量用于线程的互斥。只能为0/1一个互斥量只能用于一个资源的互斥访问,可跨进程使用。

    3)信号量:信号线用于线程的同步。可以为非负整数可实现多个同类资源的多线程互斥和同步。当信号量为单值信号量是,也可以完成一个资源的互斥访问。可跨进程使用。

    4)事件:用来通知线程有一些事件已发生,从而启动后继任务的开始,可跨进程使用。

    synchronized的底层实现就用到了临界区和互斥锁(重量级锁的情况下)这两个概念。

    3.2 synchronized  C++源码

    重点来了,之前在第一节中的图1,看过了对象头Mark Word。现在我们从C++源码来剖析具体的数据结构和获取释放锁的过程。

    2.2.1 C++中的监视器锁数据结构

    oopDesc--继承-->markOopDesc--方法monitor()-->ObjectMonitor-->enter、exit 获取、释放锁

    1.oopDesc

    openjdkhotspotsrcsharevmoopsoop.hpp下oopDesc类是JVM对象的顶级基类,故每个object都包含markOop。如下图所示:

     1 class oopDesc {
     2   friend class VMStructs;
     3  private:
     4   volatile markOop  _mark;//markOop:Mark Word标记字段
     5   union _metadata {
     6     Klass*      _klass;//对象类型元数据的指针
     7     narrowKlass _compressed_klass;
     8   } _metadata;
     9 
    10   // Fast access to barrier set.  Must be initialized.
    11   static BarrierSet* _bs;
    12 
    13  public:
    14   markOop  mark() const         { return _mark; }
    15   markOop* mark_addr() const    { return (markOop*) &_mark; }
    16 
    17   void set_mark(volatile markOop m)      { _mark = m;   }
    18 
    19   void    release_set_mark(markOop m);
    20   markOop cas_set_mark(markOop new_mark, markOop old_mark);
    21 
    22   // Used only to re-initialize the mark word (e.g., of promoted
    23   // objects during a GC) -- requires a valid klass pointer
    24   void init_mark();
    25 
    26   Klass* klass() const;
    27   Klass* klass_or_null() const volatile;
    28   Klass** klass_addr();
    29   narrowKlass* compressed_klass_addr();
    ....省略...
    }

    2.markOopDesc类

    openjdkhotspotsrcsharevmoopsmarkOop.hpp下markOopDesc继承自oopDesc,并拓展了自己的方法monitor(),如下图

    1 ObjectMonitor* monitor() const {
    2     assert(has_monitor(), "check");
    3     // Use xor instead of &~ to provide one extra tag-bit check.
    4     return (ObjectMonitor*) (value() ^ monitor_value);
    5   }

    该方法返回一个ObjectMonitor*对象指针。

    其中value()这样定义:

     1 uintptr_t value() const { return (uintptr_t) this; }

    可知:将this转换成一个指针宽度的整数(uintptr_t),然后进行"异或"位操作。

    monitor_value是常量
    1 enum {   locked_value             = 0,//00轻量级锁
    2          unlocked_value           = 1,//01无锁
    3          monitor_value            = 2,//10监视器锁,又叫重量级锁
    4          marked_value             = 3,//11GC标记
    5          biased_lock_pattern      = 5 //101偏向锁
    6   };
    指针低2位00,异或10,结果还是10.(拿一个模板为00的数,异或一个二位数=数本身。因为异或:“相同为0,不同为1”.操作)

    3.ObjectMonitor类

    在HotSpot虚拟机中,最终采用ObjectMonitor类实现monitor。

    openjdkhotspotsrcsharevm untimeobjectMonitor.hpp源码如下:

     1 ObjectMonitor() {
     2     _header       = NULL;//markOop对象头
     3     _count        = 0;
     4     _waiters      = 0,//等待线程数
     5     _recursions   = 0;//重入次数
     6     _object       = NULL;//监视器锁寄生的对象。锁不是平白出现的,而是寄托存储于对象中。
     7     _owner        = NULL;//指向获得ObjectMonitor对象的线程或基础锁
     8     _WaitSet      = NULL;//处于wait状态的线程,会被加入到wait set;
     9     _WaitSetLock  = 0 ;
    10     _Responsible  = NULL ;
    11     _succ         = NULL ;
    12     _cxq          = NULL ;
    13     FreeNext      = NULL ;
    14     _EntryList    = NULL ;//处于等待锁block状态的线程,会被加入到entry set;
    15     _SpinFreq     = 0 ;
    16     _SpinClock    = 0 ;
    17     OwnerIsThread = 0 ;// _owner is (Thread *) vs SP/BasicLock
    18     _previous_owner_tid = 0;// 监视器前一个拥有者线程的ID
    19   }

    每个线程都有两个ObjectMonitor对象列表,分别为free和used列表,如果当前free列表为空,线程将向全局global list请求分配ObjectMonitor。

    ObjectMonitor对象中有两个队列:_WaitSet 和 _EntryList,用来保存ObjectWaiter对象列表;

    2.获取锁流程

     synchronized关键字修饰的代码段,在JVM被编译为monitorenter、monitorexit指令来获取和释放互斥锁.。

    解释器执行monitorenter时会进入到InterpreterRuntime.cppInterpreterRuntime::monitorenter函数,具体实现如下:

     1 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
     2 #ifdef ASSERT
     3   thread->last_frame().interpreter_frame_verify_monitor(elem);
     4 #endif
     5   if (PrintBiasedLockingStatistics) {
     6     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
     7   }
     8   Handle h_obj(thread, elem->obj());
     9   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
    10          "must be NULL or an object");
    11   if (UseBiasedLocking) {//标识虚拟机是否开启偏向锁功能,默认开启
    12     // Retry fast entry if bias is revoked to avoid unnecessary inflation
    13     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
    14   } else {
    15     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
    16   }
    17   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
    18          "must be NULL or an object");
    19 #ifdef ASSERT
    20   thread->last_frame().interpreter_frame_verify_monitor(elem);
    21 #endif
    22 IRT_END

    先看一下入参:

    1、JavaThread thread指向java中的当前线程;
    2、BasicObjectLock基础对象锁:包含一个BasicLock和一个指向Object对象的指针oop。

    openjdkhotspotsrcsharevm
    untimeasicLock.hpp中BasicObjectLock类源码如下:
     1 class BasicObjectLock VALUE_OBJ_CLASS_SPEC {
     2   friend class VMStructs;
     3  private:
     4   BasicLock _lock;                                    // the lock, must be double word aligned
     5   oop       _obj;                                     // object holds the lock;
     6 
     7  public:
     8   // Manipulation
     9   oop      obj() const                                { return _obj;  }
    10   void set_obj(oop obj)                               { _obj = obj; }
    11   BasicLock* lock()                                   { return &_lock; }
    12 
    13   // Note: Use frame::interpreter_frame_monitor_size() for the size of BasicObjectLocks
    14   //       in interpreter activation frames since it includes machine-specific padding.
    15   static int size()                                   { return sizeof(BasicObjectLock)/wordSize; }
    16 
    17   // GC support
    18   void oops_do(OopClosure* f) { f->do_oop(&_obj); }
    19 
    20   static int obj_offset_in_bytes()                    { return offset_of(BasicObjectLock, _obj);  }
    21   static int lock_offset_in_bytes()                   { return offset_of(BasicObjectLock, _lock); }
    22 };

    3、BasicLock类型_lock对象主要用来保存:指向Object对象的对象头数据;

    basicLock.hpp中BasicLock源码如下:
     1 class BasicLock VALUE_OBJ_CLASS_SPEC {
     2   friend class VMStructs;
     3  private:
     4   volatile markOop _displaced_header;//markOop是不是很熟悉?1.2节中讲解对象头时就是分析的markOop源码
     5  public:
     6   markOop      displaced_header() const               { return _displaced_header; }
     7   void         set_displaced_header(markOop header)   { _displaced_header = header; }
     8 
     9   void print_on(outputStream* st) const;
    10 
    11   // move a basic lock (used during deoptimization
    12   void move_to(oop obj, BasicLock* dest);
    13 
    14   static int displaced_header_offset_in_bytes()       { return offset_of(BasicLock, _displaced_header); }
    15 };

    偏向锁的获取ObjectSynchronizer::fast_enter

    在HotSpot中,偏向锁的入口位于openjdkhotspotsrcsharevm untimesynchronizer.cpp文件的ObjectSynchronizer::fast_enter函数:

     1 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
     2  if (UseBiasedLocking) {
     3     if (!SafepointSynchronize::is_at_safepoint()) {
     4       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
     5       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
     6         return;
     7       }
     8     } else {
     9       assert(!attempt_rebias, "can not rebias toward VM thread");
    10       BiasedLocking::revoke_at_safepoint(obj);
    11     }
    12     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
    13  }
    14  //轻量级锁
    15  slow_enter (obj, lock, THREAD) ;
    16 }
    偏向锁的获取由BiasedLocking::revoke_and_rebias方法实现,由于实现比较长,就不贴代码了,实现逻辑如下:
    1、通过markOop mark = obj->mark()获取对象的markOop数据mark,即对象头的Mark Word;
    2、判断mark是否为可偏向状态,即mark的偏向锁标志位为 1,锁标志位为 01
    3、判断mark中JavaThread的状态:如果为空,则进入步骤(4);如果指向当前线程,则执行同步代码块;如果指向其它线程,进入步骤(5);
    4、通过CAS原子指令设置mark中JavaThread为当前线程ID,如果执行CAS成功,则执行同步代码块,否则进入步骤(5);
    5、如果执行CAS失败,表示当前存在多个线程竞争锁,当达到全局安全点(safepoint),获得偏向锁的线程被挂起,撤销偏向锁,并升级为轻量级,升级完成后被阻塞在安全点的线程继续执行同步代码块;
    偏向锁的撤销

    只有当其它线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,偏向锁的撤销由BiasedLocking::revoke_at_safepoint方法实现:

     1 void BiasedLocking::revoke_at_safepoint(Handle h_obj) {
     2   assert(SafepointSynchronize::is_at_safepoint(), "must only be called while at safepoint");//校验全局安全点
     3   oop obj = h_obj();
     4   HeuristicsResult heuristics = update_heuristics(obj, false);
     5   if (heuristics == HR_SINGLE_REVOKE) {
     6     revoke_bias(obj, false, false, NULL);
     7   } else if ((heuristics == HR_BULK_REBIAS) ||
     8              (heuristics == HR_BULK_REVOKE)) {
     9     bulk_revoke_or_rebias_at_safepoint(obj, (heuristics == HR_BULK_REBIAS), false, NULL);
    10   }
    11   clean_up_cached_monitor_info();
    12 }

    1、偏向锁的撤销动作必须等待全局安全点;
    2、暂停拥有偏向锁的线程,判断锁对象是否处于被锁定状态;
    3、撤销偏向锁,恢复到无锁(标志位为 01)或轻量级锁(标志位为 00)的状态;

    偏向锁在Java 1.6之后是默认启用的,但在应用程序启动几秒钟之后才激活,可以使用-XX:BiasedLockingStartupDelay=0参数关闭延迟,如果确定应用程序中所有锁通常情况下处于竞争状态,可以通过XX:-UseBiasedLocking=false参数关闭偏向锁。

    轻量级锁的获取
    当关闭偏向锁功能,或多个线程竞争偏向锁导致偏向锁升级为轻量级锁,会尝试获取轻量级锁,其入口位于ObjectSynchronizer::slow_enter
     1 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
     2   markOop mark = obj->mark();
     3   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
     4 
     5   if (mark->is_neutral()) {//是否为无锁状态001
     6     // Anticipate successful CAS -- the ST of the displaced mark must
     7     // be visible <= the ST performed by the CAS.
     8     lock->set_displaced_header(mark);
     9     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {//CAS成功,释放栈锁
    10       TEVENT (slow_enter: release stacklock) ;
    11       return ;
    12     }
    13     // Fall through to inflate() ...
    14   } else
    15   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
    16     assert(lock != mark->locker(), "must not re-lock the same lock");
    17     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
    18     lock->set_displaced_header(NULL);
    19     return;
    20   }
    21 
    22 #if 0
    23   // The following optimization isn't particularly useful.
    24   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
    25     lock->set_displaced_header (NULL) ;
    26     return ;
    27   }
    28 #endif
    29 
    30   // The object header will never be displaced to this lock,
    31   // so it does not matter what the value is, except that it
    32   // must be non-zero to avoid looking like a re-entrant lock,
    33   // and must not look locked either.
    34   lock->set_displaced_header(markOopDesc::unused_mark());
    35   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
    36 }

    1、markOop mark = obj->mark()方法获取对象的markOop数据mark;
    2、mark->is_neutral()方法判断mark是否为无锁状态:mark的偏向锁标志位为 0,锁标志位为 01
    3、如果mark处于无锁状态,则进入步骤(4),否则执行步骤(6);
    4、把mark保存到BasicLock对象的_displaced_header字段;
    5、通过CAS尝试将Mark Word更新为指向BasicLock对象的指针,如果更新成功,表示竞争到锁,则执行同步代码,否则执行步骤(6);
    6、如果当前mark处于加锁状态,且mark中的ptr指针指向当前线程的栈帧,则执行同步代码,否则说明有多个线程竞争轻量级锁,轻量级锁需要膨胀升级为重量级锁;

    假设线程A和B同时执行到临界区if (mark->is_neutral())
    1、线程AB都把Mark Word复制到各自的_displaced_header字段,该数据保存在线程的栈帧上,是线程私有的;
    2、Atomic::cmpxchg_ptr原子操作保证只有一个线程可以把指向栈帧的指针复制到Mark Word,假设此时线程A执行成功,并返回继续执行同步代码块;
    3、线程B执行失败,退出临界区,通过ObjectSynchronizer::inflate方法开始膨胀锁;

    轻量级锁的释放
    轻量级锁的释放通过ObjectSynchronizer::slow_exit--->调用ObjectSynchronizer::fast_exit完成。
     1 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
     2   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
     3   // if displaced header is null, the previous enter is recursive enter, no-op
     4   markOop dhw = lock->displaced_header();
     5   markOop mark ;
     6   if (dhw == NULL) {
     7      // Recursive stack-lock.
     8      // Diagnostics -- Could be: stack-locked, inflating, inflated.
     9      mark = object->mark() ;
    10      assert (!mark->is_neutral(), "invariant") ;
    11      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
    12         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
    13      }
    14      if (mark->has_monitor()) {
    15         ObjectMonitor * m = mark->monitor() ;
    16         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
    17         assert(m->is_entered(THREAD), "invariant") ;
    18      }
    19      return ;
    20   }
    21 
    22   mark = object->mark() ;
    23 
    24   // If the object is stack-locked by the current thread, try to
    25   // swing the displaced header from the box back to the mark.
    26   if (mark == (markOop) lock) {
    27      assert (dhw->is_neutral(), "invariant") ;
    28      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {//成功的释放了锁
    29         TEVENT (fast_exit: release stacklock) ;
    30         return;
    31      }
    32   }
    33 
    34   ObjectSynchronizer::inflate(THREAD, object)->exit (true, THREAD) ;//锁膨胀升级
    35 }
    1、确保处于偏向锁状态时不会执行这段逻辑;
    2、取出在获取轻量级锁时保存在BasicLock对象的mark数据dhw;
    3、通过CAS尝试把dhw替换到当前的Mark Word,如果CAS成功,说明成功的释放了锁,否则执行步骤(4);
    4、如果CAS失败,说明有其它线程在尝试获取该锁,这时需要将该锁升级为重量级锁,并释放;

    重量级锁

    重量级锁通过对象内部的监视器(monitor)实现,其中monitor的本质是依赖于底层操作系统的Mutex Lock实现,操作系统实现线程之间的切换需要从用户态到内核态的切换,切换成本非常高。

    锁膨胀过程

    锁的膨胀过程通过ObjectSynchronizer::inflate函数实现

      1 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
      2   // Inflate mutates the heap ...
      3   // Relaxing assertion for bug 6320749.
      4   assert (Universe::verify_in_progress() ||
      5           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
      6 
      7   for (;;) {//自旋
      8       const markOop mark = object->mark() ;
      9       assert (!mark->has_bias_pattern(), "invariant") ;
     10 
     11       // The mark can be in one of the following states:
     12       // *  Inflated     - just return
     13       // *  Stack-locked - coerce it to inflated
     14       // *  INFLATING    - busy wait for conversion to complete
     15       // *  Neutral      - aggressively inflate the object.
     16       // *  BIASED       - Illegal.  We should never see this
     17 
     18       // CASE: inflated已膨胀,即重量级锁
     19       if (mark->has_monitor()) {//判断当前是否为重量级锁
     20           ObjectMonitor * inf = mark->monitor() ;//获取指向ObjectMonitor的指针
     21           assert (inf->header()->is_neutral(), "invariant");
     22           assert (inf->object() == object, "invariant") ;
     23           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
     24           return inf ;
     25       }
     26 
     27       // CASE: inflation in progress - inflating over a stack-lock.膨胀等待(其他线程正在从轻量级锁转为膨胀锁)
     28       // Some other thread is converting from stack-locked to inflated.
     29       // Only that thread can complete inflation -- other threads must wait.
     30       // The INFLATING value is transient.
     31       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
     32       // We could always eliminate polling by parking the thread on some auxiliary list.
     33       if (mark == markOopDesc::INFLATING()) {
     34          TEVENT (Inflate: spin while INFLATING) ;
     35          ReadStableMark(object) ;
     36          continue ;
     37       }
     38 
     39       // CASE: stack-locked栈锁(轻量级锁) 
     40       // Could be stack-locked either by this thread or by some other thread.
     41       //
     42       // Note that we allocate the objectmonitor speculatively, _before_ attempting
     43       // to install INFLATING into the mark word.  We originally installed INFLATING,
     44       // allocated the objectmonitor, and then finally STed the address of the
     45       // objectmonitor into the mark.  This was correct, but artificially lengthened
     46       // the interval in which INFLATED appeared in the mark, thus increasing
     47       // the odds of inflation contention.
     48       //
     49       // We now use per-thread private objectmonitor free lists.
     50       // These list are reprovisioned from the global free list outside the
     51       // critical INFLATING...ST interval.  A thread can transfer
     52       // multiple objectmonitors en-mass from the global free list to its local free list.
     53       // This reduces coherency traffic and lock contention on the global free list.
     54       // Using such local free lists, it doesn't matter if the omAlloc() call appears
     55       // before or after the CAS(INFLATING) operation.
     56       // See the comments in omAlloc().
     57 
     58       if (mark->has_locker()) {
     59           ObjectMonitor * m = omAlloc (Self) ;//获取一个可用的ObjectMonitor 
     60           // Optimistically prepare the objectmonitor - anticipate successful CAS
     61           // We do this before the CAS in order to minimize the length of time
     62           // in which INFLATING appears in the mark.
     63           m->Recycle();
     64           m->_Responsible  = NULL ;
     65           m->OwnerIsThread = 0 ;
     66           m->_recursions   = 0 ;
     67           m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
     68 
     69           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
     70           if (cmp != mark) {//CAS失败//CAS失败,说明冲突了,自旋等待//CAS失败,说明冲突了,自旋等待//CAS失败,说明冲突了,自旋等待
     71              omRelease (Self, m, true) ;//释放监视器锁
     72              continue ;       // Interference -- just retry
     73           }
     74 
     75           // We've successfully installed INFLATING (0) into the mark-word.
     76           // This is the only case where 0 will appear in a mark-work.
     77           // Only the singular thread that successfully swings the mark-word
     78           // to 0 can perform (or more precisely, complete) inflation.
     79           //
     80           // Why do we CAS a 0 into the mark-word instead of just CASing the
     81           // mark-word from the stack-locked value directly to the new inflated state?
     82           // Consider what happens when a thread unlocks a stack-locked object.
     83           // It attempts to use CAS to swing the displaced header value from the
     84           // on-stack basiclock back into the object header.  Recall also that the
     85           // header value (hashcode, etc) can reside in (a) the object header, or
     86           // (b) a displaced header associated with the stack-lock, or (c) a displaced
     87           // header in an objectMonitor.  The inflate() routine must copy the header
     88           // value from the basiclock on the owner's stack to the objectMonitor, all
     89           // the while preserving the hashCode stability invariants.  If the owner
     90           // decides to release the lock while the value is 0, the unlock will fail
     91           // and control will eventually pass from slow_exit() to inflate.  The owner
     92           // will then spin, waiting for the 0 value to disappear.   Put another way,
     93           // the 0 causes the owner to stall if the owner happens to try to
     94           // drop the lock (restoring the header from the basiclock to the object)
     95           // while inflation is in-progress.  This protocol avoids races that might
     96           // would otherwise permit hashCode values to change or "flicker" for an object.
     97           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
     98           // 0 serves as a "BUSY" inflate-in-progress indicator.
     99 
    100 
    101           // fetch the displaced mark from the owner's stack.
    102           // The owner can't die or unwind past the lock while our INFLATING
    103           // object is in the mark.  Furthermore the owner can't complete
    104           // an unlock on the object, either.
    105           markOop dmw = mark->displaced_mark_helper() ;
    106           assert (dmw->is_neutral(), "invariant") ;
    107           //CAS成功,设置ObjectMonitor的_header、_owner和_object等
    108           // Setup monitor fields to proper values -- prepare the monitor
    109           m->set_header(dmw) ;
    110 
    111           // Optimization: if the mark->locker stack address is associated
    112           // with this thread we could simply set m->_owner = Self and
    113           // m->OwnerIsThread = 1. Note that a thread can inflate an object
    114           // that it has stack-locked -- as might happen in wait() -- directly
    115           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
    116           m->set_owner(mark->locker());
    117           m->set_object(object);
    118           // TODO-FIXME: assert BasicLock->dhw != 0.
    119 
    120           // Must preserve store ordering. The monitor state must
    121           // be stable at the time of publishing the monitor address.
    122           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
    123           object->release_set_mark(markOopDesc::encode(m));
    124 
    125           // Hopefully the performance counters are allocated on distinct cache lines
    126           // to avoid false sharing on MP systems ...
    127           if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
    128           TEVENT(Inflate: overwrite stacklock) ;
    129           if (TraceMonitorInflation) {
    130             if (object->is_instance()) {
    131               ResourceMark rm;
    132               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
    133                 (void *) object, (intptr_t) object->mark(),
    134                 object->klass()->external_name());
    135             }
    136           }
    137           return m ;
    138       }
    139 
    140       // CASE: neutral 无锁
    141       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
    142       // If we know we're inflating for entry it's better to inflate by swinging a
    143       // pre-locked objectMonitor pointer into the object header.   A successful
    144       // CAS inflates the object *and* confers ownership to the inflating thread.
    145       // In the current implementation we use a 2-step mechanism where we CAS()
    146       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
    147       // An inflateTry() method that we could call from fast_enter() and slow_enter()
    148       // would be useful.
    149 
    150       assert (mark->is_neutral(), "invariant");
    151       ObjectMonitor * m = omAlloc (Self) ;
    152       // prepare m for installation - set monitor to initial state
    153       m->Recycle();
    154       m->set_header(mark);
    155       m->set_owner(NULL);
    156       m->set_object(object);
    157       m->OwnerIsThread = 1 ;
    158       m->_recursions   = 0 ;
    159       m->_Responsible  = NULL ;
    160       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
    161 
    162       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
    163           m->set_object (NULL) ;
    164           m->set_owner  (NULL) ;
    165           m->OwnerIsThread = 0 ;
    166           m->Recycle() ;
    167           omRelease (Self, m, true) ;
    168           m = NULL ;
    169           continue ;
    170           // interference - the markword changed - just retry.
    171           // The state-transitions are one-way, so there's no chance of
    172           // live-lock -- "Inflated" is an absorbing state.
    173       }
    174 
    175       // Hopefully the performance counters are allocated on distinct
    176       // cache lines to avoid false sharing on MP systems ...
    177       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
    178       TEVENT(Inflate: overwrite neutral) ;
    179       if (TraceMonitorInflation) {
    180         if (object->is_instance()) {
    181           ResourceMark rm;
    182           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
    183             (void *) object, (intptr_t) object->mark(),
    184             object->klass()->external_name());
    185         }
    186       }
    187       return m ;
    188   }
    189 }
    膨胀过程的实现比较复杂,大概实现过程如下:
    1、整个膨胀过程在自旋下完成;
    2、mark->has_monitor()方法判断当前是否为重量级锁(上图18-25行),即Mark Word的锁标识位为 10,如果当前状态为重量级锁,执行步骤(3),否则执行步骤(4);
    3、mark->monitor()方法获取指向ObjectMonitor的指针,并返回,说明膨胀过程已经完成;
    4、如果当前锁处于膨胀中(上图33-37行),说明该锁正在被其它线程执行膨胀操作,则当前线程就进行自旋等待锁膨胀完成,这里需要注意一点,虽然是自旋操作,但不会一直占用cpu资源,每隔一段时间会通过os::NakedYield方法放弃cpu资源,或通过park方法挂起;如果其他线程完成锁的膨胀操作,则退出自旋并返回;
    5、如果当前是轻量级锁状态(上图58-138行),即锁标识位为 00,膨胀过程如下:
    1. 通过omAlloc方法,获取一个可用的ObjectMonitor monitor,并重置monitor数据;
    2. 通过CAS尝试将Mark Word设置为markOopDesc:INFLATING,标识当前锁正在膨胀中,如果CAS失败,说明同一时刻其它线程已经将Mark Word设置为markOopDesc:INFLATING,当前线程进行自旋等待膨胀完成;
    3. 如果CAS成功,设置monitor的各个字段:_header、_owner和_object等,并返回;
    6、如果是无锁(中立,上图150-186行),重置监视器值;
    monitor竞争
    当锁膨胀完成并返回对应的monitor时,并不表示该线程竞争到了锁,真正的锁竞争发生在ObjectMonitor::enter方法中。
      1 void ATTR ObjectMonitor::enter(TRAPS) {
      2   // The following code is ordered to check the most common cases first
      3   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
      4   Thread * const Self = THREAD ;
      5   void * cur ;
      6 
      7   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
      8   if (cur == NULL) {//CAS成功
      9      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
     10      assert (_recursions == 0   , "invariant") ;
     11      assert (_owner      == Self, "invariant") ;
     12      // CONSIDER: set or assert OwnerIsThread == 1
     13      return ;
     14   }
     15 
     16   if (cur == Self) {//重入锁
     17      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
     18      _recursions ++ ;
     19      return ;
     20   }
     21 
     22   if (Self->is_lock_owned ((address)cur)) {
     23     assert (_recursions == 0, "internal state error");
     24     _recursions = 1 ;
     25     // Commute owner from a thread-specific on-stack BasicLockObject address to
     26     // a full-fledged "Thread *".
     27     _owner = Self ;
     28     OwnerIsThread = 1 ;
     29     return ;
     30   }
     31 
     32   // We've encountered genuine contention.
     33   assert (Self->_Stalled == 0, "invariant") ;
     34   Self->_Stalled = intptr_t(this) ;
     35 
     36   // Try one round of spinning *before* enqueueing Self
     37   // and before going through the awkward and expensive state
     38   // transitions.  The following spin is strictly optional ...
     39   // Note that if we acquire the monitor from an initial spin
     40   // we forgo posting JVMTI events and firing DTRACE probes.
     41   if (Knob_SpinEarly && TrySpin (Self) > 0) {
     42      assert (_owner == Self      , "invariant") ;
     43      assert (_recursions == 0    , "invariant") ;
     44      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
     45      Self->_Stalled = 0 ;
     46      return ;
     47   }
     48 
     49   assert (_owner != Self          , "invariant") ;
     50   assert (_succ  != Self          , "invariant") ;
     51   assert (Self->is_Java_thread()  , "invariant") ;
     52   JavaThread * jt = (JavaThread *) Self ;
     53   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
     54   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
     55   assert (this->object() != NULL  , "invariant") ;
     56   assert (_count >= 0, "invariant") ;
     57 
     58   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
     59   // Ensure the object-monitor relationship remains stable while there's contention.
     60   Atomic::inc_ptr(&_count);
     61 
     62   EventJavaMonitorEnter event;
     63 
     64   { // Change java thread status to indicate blocked on monitor enter.
     65     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
     66 
     67     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
     68     if (JvmtiExport::should_post_monitor_contended_enter()) {
     69       JvmtiExport::post_monitor_contended_enter(jt, this);
     70     }
     71 
     72     OSThreadContendState osts(Self->osthread());
     73     ThreadBlockInVM tbivm(jt);
     74 
     75     Self->set_current_pending_monitor(this);
     76 
     77     // TODO-FIXME: change the following for(;;) loop to straight-line code.
     78     for (;;) {
     79       jt->set_suspend_equivalent();
     80       // cleared by handle_special_suspend_equivalent_condition()
     81       // or java_suspend_self()
     82 
     83       EnterI (THREAD) ;
     84 
    ...省略...139 }
    1、通过CAS尝试把monitor的_owner字段设置为当前线程;
    2、如果设置之前的_owner指向当前线程,说明当前线程再次进入monitor,即重入锁,执行_recursions ++ ,记录重入的次数;
    3、如果之前的_owner指向的地址在当前线程中,这种描述有点拗口,换一种说法:之前_owner指向的BasicLock在当前线程栈上,说明当前线程是第一次进入该monitor,设置_recursions为1,_owner为当前线程,该线程成功获得锁并返回;
    4、如果获取锁失败,则等待锁的释放;
    monitor等待
    monitor竞争失败的线程,通过自旋执行ObjectMonitor::EnterI方法等待锁的释放,EnterI方法的部分逻辑实现如下:
     1 ObjectWaiter node(Self) ;
     2     Self->_ParkEvent->reset() ;
     3     node._prev   = (ObjectWaiter *) 0xBAD ;
     4     node.TState  = ObjectWaiter::TS_CXQ ;
     5 
     6     // Push "Self" onto the front of the _cxq.
     7     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
     8     // Note that spinning tends to reduce the rate at which threads
     9     // enqueue and dequeue on EntryList|cxq.
    10     ObjectWaiter * nxt ;
    11     for (;;) {
    12         node._next = nxt = _cxq ;
    13         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
    14 
    15         // Interference - the CAS failed because _cxq changed.  Just retry.
    16         // As an optional optimization we retry the lock.
    17         if (TryLock (Self) > 0) {
    18             assert (_succ != Self         , "invariant") ;
    19             assert (_owner == Self        , "invariant") ;
    20             assert (_Responsible != Self  , "invariant") ;
    21             return ;
    22         }
    23     }
    1、当前线程被封装成ObjectWaiter对象node,状态设置成ObjectWaiter::TS_CXQ;
    2、在for循环中,通过CAS把node节点push到_cxq列表中,同一时刻可能有多个线程把自己的node节点push到_cxq列表中;
    3、node节点push到_cxq列表之后,通过自旋尝试获取锁,如果还是没有获取到锁,则通过park将当前线程挂起,等待被唤醒,实现如下:
     1 for (;;) {
     2 
     3         if (TryLock (Self) > 0) break ;
     4         assert (_owner != Self, "invariant") ;
     5 
     6         if ((SyncFlags & 2) && _Responsible == NULL) {
     7            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
     8         }
     9 
    10         // park self
    11         if (_Responsible == Self || (SyncFlags & 1)) {
    12             TEVENT (Inflated enter - park TIMED) ;
    13             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
    14             // Increase the RecheckInterval, but clamp the value.
    15             RecheckInterval *= 8 ;
    16             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
    17         } else {
    18             TEVENT (Inflated enter - park UNTIMED) ;
    19             Self->_ParkEvent->park() ;//当前线程挂起
    20         }
    21 
    22         if (TryLock(Self) > 0) break ;
    23 
    24         // The lock is still contested.
    25         // Keep a tally of the # of futile wakeups.
    26         // Note that the counter is not protected by a lock or updated by atomics.
    27         // That is by design - we trade "lossy" counters which are exposed to
    28         // races during updates for a lower probe effect.
    29         TEVENT (Inflated enter - Futile wakeup) ;
    30         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
    31            ObjectMonitor::_sync_FutileWakeups->inc() ;
    32         }
    33         ++ nWakeups ;
    34 
    35         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
    36         // We can defer clearing _succ until after the spin completes
    37         // TrySpin() must tolerate being called with _succ == Self.
    38         // Try yet another round of adaptive spinning.
    39         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
    40 
    41         // We can find that we were unpark()ed and redesignated _succ while
    42         // we were spinning.  That's harmless.  If we iterate and call park(),
    43         // park() will consume the event and return immediately and we'll
    44         // just spin again.  This pattern can repeat, leaving _succ to simply
    45         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
    46         // Alternately, we can sample fired() here, and if set, forgo spinning
    47         // in the next iteration.
    48 
    49         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
    50            Self->_ParkEvent->reset() ;
    51            OrderAccess::fence() ;
    52         }
    53         if (_succ == Self) _succ = NULL ;
    54 
    55         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
    56         OrderAccess::fence() ;
    57     }

    4、当该线程被唤醒时,会从挂起的点继续执行,通过ObjectMonitor::TryLock尝试获取锁,TryLock方法实现如下:

     1 int ObjectMonitor::TryLock (Thread * Self) {
     2    for (;;) {
     3       void * own = _owner ;
     4       if (own != NULL) return 0 ;
     5       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {//CAS成功,获取锁
     6          // Either guarantee _recursions == 0 or set _recursions = 0.
     7          assert (_recursions == 0, "invariant") ;
     8          assert (_owner == Self, "invariant") ;
     9          // CONSIDER: set or assert that OwnerIsThread == 1
    10          return 1 ;
    11       }
    12       // The lock had been free momentarily, but we lost the race to the lock.
    13       // Interference -- the CAS failed.
    14       // We can either return -1 or retry.
    15       // Retry doesn't make as much sense because the lock was just acquired.
    16       if (true) return -1 ;
    17    }
    18 }

    其本质就是通过CAS设置monitor的_owner字段为当前线程,如果CAS成功,则表示该线程获取了锁,跳出自旋操作,执行同步代码,否则继续被挂起;

    monitor释放

    当某个持有锁的线程执行完同步代码块时,会进行锁的释放,给其它线程机会执行同步代码,在HotSpot中,通过退出monitor的方式实现锁的释放,并通知被阻塞的线程,具体实现位于ObjectMonitor::exit方法中。

     1 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
     2    Thread * Self = THREAD ;
     3    if (THREAD != _owner) {
     4      if (THREAD->is_lock_owned((address) _owner)) {
     5        // Transmute _owner from a BasicLock pointer to a Thread address.
     6        // We don't need to hold _mutex for this transition.
     7        // Non-null to Non-null is safe as long as all readers can
     8        // tolerate either flavor.
     9        assert (_recursions == 0, "invariant") ;
    10        _owner = THREAD ;
    11        _recursions = 0 ;
    12        OwnerIsThread = 1 ;
    13      } else {
    14        // NOTE: we need to handle unbalanced monitor enter/exit
    15        // in native code by throwing an exception.
    16        // TODO: Throw an IllegalMonitorStateException ?
    17        TEVENT (Exit - Throw IMSX) ;
    18        assert(false, "Non-balanced monitor enter/exit!");
    19        if (false) {
    20           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
    21        }
    22        return;
    23      }
    24    }
    25 
    26    if (_recursions != 0) {
    27      _recursions--;        // this is simple recursive enter
    28      TEVENT (Inflated exit - recursive) ;
    29      return ;
    30    }
    ...省略...

    1、如果是重量级锁的释放,monitor中的_owner指向当前线程,即THREAD == _owner;
    2、根据不同的策略(由QMode指定),从cxq或EntryList中获取头节点,通过ObjectMonitor::ExitEpilog方法唤醒该节点封装的线程,唤醒操作最终由unpark完成,实现如下:
     1 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
     2    assert (_owner == Self, "invariant") ;
     3 
     4    // Exit protocol:
     5    // 1. ST _succ = wakee
     6    // 2. membar #loadstore|#storestore;
     7    // 2. ST _owner = NULL
     8    // 3. unpark(wakee)
     9 
    10    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
    11    ParkEvent * Trigger = Wakee->_event ;
    12 
    13    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
    14    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
    15    // out-of-scope (non-extant).
    16    Wakee  = NULL ;
    17 
    18    // Drop the lock
    19    OrderAccess::release_store_ptr (&_owner, NULL) ;
    20    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
    21 
    22    if (SafepointSynchronize::do_call_back()) {
    23       TEVENT (unpark before SAFEPOINT) ;
    24    }
    25 
    26    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
    27    Trigger->unpark() ;
    28 
    29    // Maintain stats and report events to JVMTI
    30    if (ObjectMonitor::_sync_Parks != NULL) {
    31       ObjectMonitor::_sync_Parks->inc() ;
    32    }
    33 }

    3、被唤醒的线程,继续执行monitor的竞争;

    四.总结

    本文重点介绍了Synchronized原理以及JVM对Synchronized的优化。简单来说解决三种场景:

    1)只有一个线程进入临界区,偏向锁

    2)多个线程交替进入临界区,轻量级锁

    3)多线程同时进入临界区,重量级锁

    ========================================================

    参考:

    《深入理解 Java 虚拟机》

    JVM源码分析之synchronized实现

  • 相关阅读:
    #2019090700004
    51nod 1191-贪心+并查集
    hdu 5015-矩阵快速幂
    树形DP—依赖背包模板
    HDU 1074—压缩DP
    动态绑定的开销
    动态绑定
    静态绑定(前期绑定)
    继承的一些优点
    多态置换原则初始化基类对象
  • 原文地址:https://www.cnblogs.com/dennyzhangdd/p/6734638.html
Copyright © 2011-2022 走看看