zoukankan      html  css  js  c++  java
  • 【转载】 【TensorFlow】static_rnn 和dynamic_rnn的区别

    原文地址:

    https://blog.csdn.net/qq_20135597/article/details/88980975

    ---------------------------------------------------------------------------------------------

    tensorflow中提供了rnn接口有两种,一种是静态的rnn,一种是动态的rnn

    通常用法:

    1、静态接口:static_rnn

    主要使用 tf.contrib.rnn

    x = tf.placeholder("float", [None, n_steps, n_input])
    x1 = tf.unstack(x, n_steps, 1)
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
    outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32)
    pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)

    静态 rnn 的意思就是在图中创建一个固定长度(n_steps)的网络。这将导致

    缺点:

    1. 生成过程耗时更长,占内存更多,导出的模型更大;
    2. 无法传递比最初指定的更长的序列(> n_steps)。

    优点:

    模型中带有某个序列中间台的信息,便与调试。

    2、动态接口:dynamic_rnn

    主要使用 tf.nn.dynamic_rnn

    x = tf.placeholder("float", [None, n_steps, n_input])
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
    outputs,_  = tf.nn.dynamic_rnn(lstm_cell ,x,dtype=tf.float32)
    outputs = tf.transpose(outputs, [1, 0, 2])
    pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)

        动态的tf.nn.dynamic_rnn被执行时,它使用循环来动态构建图形。这意味着

    优点:

    1. 图形创建速度更快,占用内存更少;
    2. 并且可以提供可变大小的批处理。

    缺点:

    1. 模型中只有最后的状态。

           动态rnn的意思是只创建样本中的一个序列RNN,其他序列数据会通过循环进入该RNN运算

    区别:

     1、输入输出不同:

            dynamic_rnn实现的功能就是可以让不同迭代传入的batch可以是长度不同数据,但同一次迭代一个batch内部的所有数据长度仍然是固定的。例如,第一时刻传入的数据shape=[batch_size, 10],第二时刻传入的数据shape=[batch_size, 12],第三时刻传入的数据shape=[batch_size, 8]等等。

          但是static_rnn不能这样,它要求每一时刻传入的batch数据的[batch_size, max_seq],在每次迭代过程中都保持不变。

    2、训练方式不同:

    具体参见参考文献1
     

    多层LSTM的代码实现对比:

    1、静态多层RNN

    import tensorflow as tf
    # 导入 MINST 数据集
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True)
     
    n_input = 28 # MNIST data 输入 (img shape: 28*28)
    n_steps = 28 # timesteps
    n_hidden = 128 # hidden layer num of features
    n_classes = 10  # MNIST 列别 (0-9 ,一共10类)
    batch_size = 128
     
    tf.reset_default_graph()
    # tf Graph input
    x = tf.placeholder("float", [None, n_steps, n_input])
    y = tf.placeholder("float", [None, n_classes])
     
    gru = tf.contrib.rnn.GRUCell(n_hidden*2)
    lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden)
    mcell = tf.contrib.rnn.MultiRNNCell([lstm_cell,gru])
     
    x1 = tf.unstack(x, n_steps, 1)
    outputs, states = tf.contrib.rnn.static_rnn(mcell, x1, dtype=tf.float32)
     
    pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
     
    learning_rate = 0.001
    # Define loss and optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
     
    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
     
    training_iters = 100000
     
    display_step = 10
     
    # 启动session
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        step = 1
        # Keep training until reach max iterations
        while step * batch_size < training_iters:
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            # Reshape data to get 28 seq of 28 elements
            batch_x = batch_x.reshape((batch_size, n_steps, n_input))
            # Run optimization op (backprop)
            sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
            if step % display_step == 0:
                # 计算批次数据的准确率
                acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
                # Calculate batch loss
                loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
                print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + 
                      "{:.6f}".format(loss) + ", Training Accuracy= " + 
                      "{:.5f}".format(acc))
            step += 1
        print (" Finished!")
     
        # 计算准确率 for 128 mnist test images
        test_len = 100
        test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
        test_label = mnist.test.labels[:test_len]
        print ("Testing Accuracy:", 
            sess.run(accuracy, feed_dict={x: test_data, y: test_label}))

    2、动态多层RNN

    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True)
     
    n_input = 28 # MNIST data 输入 (img shape: 28*28)
    n_steps = 28 # timesteps
    n_hidden = 128 # hidden layer num of features
    n_classes = 10  # MNIST 列别 (0-9 ,一共10类)
    batch_size = 128
     
    tf.reset_default_graph()
    # tf Graph input
    x = tf.placeholder("float", [None, n_steps, n_input])
    y = tf.placeholder("float", [None, n_classes])
     
    gru = tf.contrib.rnn.GRUCell(n_hidden*2)
    lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden)
    mcell = tf.contrib.rnn.MultiRNNCell([lstm_cell,gru])
     
    outputs,states  = tf.nn.dynamic_rnn(mcell,x,dtype=tf.float32)#(?, 28, 256)
    outputs = tf.transpose(outputs, [1, 0, 2])#(28, ?, 256) 28个时序,取最后一个时序outputs[-1]=(?,256)
     
    pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
     
    learning_rate = 0.001
    # Define loss and optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
     
    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
     
    training_iters = 100000
     
    display_step = 10
     
    # 启动session
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        step = 1
        # Keep training until reach max iterations
        while step * batch_size < training_iters:
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            # Reshape data to get 28 seq of 28 elements
            batch_x = batch_x.reshape((batch_size, n_steps, n_input))
            # Run optimization op (backprop)
            sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
            if step % display_step == 0:
                # 计算批次数据的准确率
                acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
                # Calculate batch loss
                loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
                print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + 
                      "{:.6f}".format(loss) + ", Training Accuracy= " + 
                      "{:.5f}".format(acc))
            step += 1
        print (" Finished!")
     
        # 计算准确率 for 128 mnist test images
        test_len = 100
        test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
        test_label = mnist.test.labels[:test_len]
        print ("Testing Accuracy:", 
            sess.run(accuracy, feed_dict={x: test_data, y: test_label}))

    【参考文献】:

    1、https://www.jianshu.com/p/1b1ea45fab47

    2、What's the difference between tensorflow dynamic_rnn and rnn?

    ------------------------------------------------------------------------

  • 相关阅读:
    全国大学生信息安全竞赛—创新实践能力赛 华东北赛区部分wp
    全国大学生信息安全竞赛—创新实践能力赛初赛部分wp
    XMan冬令营 哈尔滨 day3 移动恶意应用分析
    XMan冬令营 哈尔滨 day2 安卓应用程序逆向分析
    XMan冬令营 哈尔滨 day1 移动应用程序渗透测试
    Linux大作业
    c++ 手写计算器
    KMP字符匹配算法
    二叉树遍历的几种实现
    Jmeter之CSS选择器/JQuery选择器关联
  • 原文地址:https://www.cnblogs.com/devilmaycry812839668/p/11108847.html
Copyright © 2011-2022 走看看