zoukankan      html  css  js  c++  java
  • 【转载】 tensorflow的单层静态与动态RNN比较

    原文地址:

    https://www.jianshu.com/p/1b1ea45fab47

    yanghedada

    -----------------------------------------------------------------------------------

    static_rnn和dynamic_rnn

    1:     static_rnn

    x = tf.placeholder("float", [None, n_steps, n_input])
    x1 = tf.unstack(x, n_steps, 1)
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
    outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32)
    pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)

    2:     dynamic_rnn

    x = tf.placeholder("float", [None, n_steps, n_input])
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
    outputs,_  = tf.nn.dynamic_rnn(lstm_cell ,x,dtype=tf.float32)
    outputs = tf.transpose(outputs, [1, 0, 2])
    pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
    BasicLSTMCell:
    (num_units: 是指一个Cell中神经元的个数,forget_bias:忘记门记住多少,1.0代表全部记住)
     
     

    tf.contrib.rnn.static_rnn:
    静态 rnn的意思就是按照样本时间序列个数(n_steps)展开,在图中创建(n_steps)个序列的cell
     
     

    tf.nn.dynamic_rnn:
    动态rnn的意思是只创建样本中的一个序列RNN,其他序列数据会通过循环进入该RNN运算。  通过静态static_rnn生成的RNN网络,生成过程所需的时间会更长,网络所占有的内存会更多,导出的模型会更大。static_rnn模型中会带有第个序列中间态的信息,利于调试。static_rnn在使用时必须与训练的样本序列个数相同。dynamic_rnn通过动态生成的RNN网络,所占用内存较少。dynamic_rnn模型中只会有最后的状态,在使用时还能支持不同的序列个数。



     
     
     

    区别

    1.tf.nn.dynamic_rnn与tf.contrib.rnn.static_rnn输入格式不同。
    2.tf.nn.dynamic_rnn与tf.contrib.rnn.static_rnn输出格式不同。
    3.tf.nn.dynamic_rnn与tf.contrib.rnn.static_rnn内部训练方式。




     
     
     

    请仔细对比以下区别:

    可以参考:https://blog.csdn.net/mzpmzk/article/details/80573338

     
     
     
     
     
     
     
     
     

    动态rnn

    import tensorflow as tf
    # 导入 MINST 数据集
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True)
    n_input = 28 # MNIST data 输入 (img shape: 28*28)
    n_steps = 28 # timesteps
    n_hidden = 128 # hidden layer num of features
    n_classes = 10  # MNIST 列别 (0-9 ,一共10类)
    batch_size = 128
    tf.reset_default_graph()
    
    # tf Graph input
    x = tf.placeholder("float", [None, n_steps, n_input])
    y = tf.placeholder("float", [None, n_classes])
    lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0)
    outputs,_  = tf.nn.dynamic_rnn(lstm_cell,x,dtype=tf.float32)
    outputs = tf.transpose(outputs, [1, 0, 2])
    #取最后一条输出信息,(outputs[-1])
    pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
    
    learning_rate = 0.001
    training_iters = 100000
    
    display_step = 10
    
    # Define loss and optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    
    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # 启动session
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        step = 1
        # Keep training until reach max iterations
        while step * batch_size < training_iters:
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            # Reshape data to get 28 seq of 28 elements
            batch_x = batch_x.reshape((batch_size, n_steps, n_input))
            # Run optimization op (backprop)
            sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
            if step % display_step == 0:
                # 计算批次数据的准确率
                acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
                # Calculate batch loss
                loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
                print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + 
                      "{:.6f}".format(loss) + ", Training Accuracy= " + 
                      "{:.5f}".format(acc))
            step += 1
        print (" Finished!")
    
        # 计算准确率 for 128 mnist test images
        test_len = 128
        test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
        test_label = mnist.test.labels[:test_len]
        print ("Testing Accuracy:", 
            sess.run(accuracy, feed_dict={x: test_data, y: test_label}))

    静态RNN

    import tensorflow as tf
    # 导入 MINST 数据集
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True)
    n_input = 28 # MNIST data 输入 (img shape: 28*28)
    n_steps = 28 # timesteps
    n_hidden = 128 # hidden layer num of features
    n_classes = 10  # MNIST 列别 (0-9 ,一共10类)
    batch_size = 128
    tf.reset_default_graph()
    
    # tf Graph input
    x = tf.placeholder("float", [None, n_steps, n_input])
    y = tf.placeholder("float", [None, n_classes])
    lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0)
    x1 = tf.unstack(x, n_steps, 1)
    lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0)
    outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32)
    #取最后一条输出信息,(outputs[-1])
    pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
    
    learning_rate = 0.001
    training_iters = 100000
    
    display_step = 10
    
    # Define loss and optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    
    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # 启动session
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        step = 1
        # Keep training until reach max iterations
        while step * batch_size < training_iters:
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            # Reshape data to get 28 seq of 28 elements
            batch_x = batch_x.reshape((batch_size, n_steps, n_input))
            # Run optimization op (backprop)
            sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
            if step % display_step == 0:
                # 计算批次数据的准确率
                acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
                # Calculate batch loss
                loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
                print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + 
                      "{:.6f}".format(loss) + ", Training Accuracy= " + 
                      "{:.5f}".format(acc))
            step += 1
        print (" Finished!")
    
        # 计算准确率 for 128 mnist test images
        test_len = 128
        test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
        test_label = mnist.test.labels[:test_len]
        print ("Testing Accuracy:", 
            sess.run(accuracy, feed_dict={x: test_data, y: test_label}))

    本代码源自:
    凯文自学TensorFlow

    # -*- coding: utf-8 -*-
    
    
    import tensorflow as tf
    # 导入 MINST 数据集
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True)
    n_input = 28 # MNIST data 输入 (img shape: 28*28)
    n_steps = 28 # timesteps
    n_hidden = 128 # hidden layer num of features
    n_classes = 10  # MNIST 列别 (0-9 ,一共10类)
    batch_size = 128
    tf.reset_default_graph()
    
    # tf Graph input
    x = tf.placeholder("float", [None, n_steps, n_input])
    y = tf.placeholder("float", [None, n_classes])
    #重置x以适合tf.contrib.rnn.static_rnn所要求的格式
    #x1 = tf.unstack(x, n_steps, 1)
    
    #BasicLSTMCell(num_units: 是指一个Cell中神经元的个数,forget_bias:忘记门记住多少,1.0代表全部记住)
    #静态 (tf.contrib.rnn.static_rnn)的意思就是按照样本时间序列个数(n_steps)展开,在图中创建(n_steps)个序列的cell;
    #动态(tf.nn.dynamic_rnn)的意思是只创建样本中的一个序列RNN,其他序列数据会通过循环进入该RNN运算
    """
    通过静态生成的RNN网络,生成过程所需的时间会更长,网络所占有的内存会更多,导出的模型会更大
    。模型中会带有第个序列中间态的信息,利于调试。在使用时必须与训练的样本序列个数相同。通过动
    态生成的RNN网络,所占用内存较少。模型中只会有最后的状态,在使用时还能支持不同的序列个数。
    """
    #lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
    #outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32)
    """
    #2 LSTMCell,LSTM实现的一个高级版本(use_peepholes:默认False,True表示启用peephole连接)
    cell_clip:是否在输出前对cell状态按照给定值进行截断处理
    initializer:指定初始化函数
    num_proj:通过projection进行模型压缩的输出维度
    proj_clip:将num_proj按照给定的proj_clip截断
    """
    #lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0)
    #outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32)
    
    #3 gru类定义
    #gru = tf.contrib.rnn.GRUCell(n_hidden)
    #outputs = tf.contrib.rnn.static_rnn(gru, x1, dtype=tf.float32)
    
    #4 创建动态RNN,此时的输入是x,是动态的[None, n_steps, n_input]LIST
    #具体定义参考https://blog.csdn.net/mzpmzk/article/details/80573338
    gru = tf.contrib.rnn.GRUCell(n_hidden)
    outputs,_  = tf.nn.dynamic_rnn(gru,x,dtype=tf.float32)
    outputs = tf.transpose(outputs, [1, 0, 2])
    #取最后一条输出信息,(outputs[-1])
    pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
    
    
    
    learning_rate = 0.001
    training_iters = 100000
    
    display_step = 10
    
    # Define loss and optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    
    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # 启动session
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        step = 1
        # Keep training until reach max iterations
        while step * batch_size < training_iters:
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            # Reshape data to get 28 seq of 28 elements
            batch_x = batch_x.reshape((batch_size, n_steps, n_input))
            # Run optimization op (backprop)
            sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
            if step % display_step == 0:
                # 计算批次数据的准确率
                acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
                # Calculate batch loss
                loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
                print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + 
                      "{:.6f}".format(loss) + ", Training Accuracy= " + 
                      "{:.5f}".format(acc))
            step += 1
        print (" Finished!")
    
        # 计算准确率 for 128 mnist test images
        test_len = 128
        test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
        test_label = mnist.test.labels[:test_len]
        print ("Testing Accuracy:", 
            sess.run(accuracy, feed_dict={x: test_data, y: test_label}))

    -----------------------------------------------------------------------------------

  • 相关阅读:
    C# using的三种用法
    C# 匿名方法和Lambda表达式
    c#中内置委托
    c#委托中的匿名方法和lambda表达式
    java生成条形码
    根据日期筛选和模糊查询
    mysql中ifnull()方法的用法
    mysql数据库中的出发器
    动态SQL之<where>、<if>条件判断
    动态sql
  • 原文地址:https://www.cnblogs.com/devilmaycry812839668/p/11109045.html
Copyright © 2011-2022 走看看