zoukankan      html  css  js  c++  java
  • WarpDrive 教程 第一部分修改版

    本文参考: https://www.cnblogs.com/devilmaycry812839668/p/15327509.html

    warpDrive是一个python库,目的是使用GPU并行运行多个仿真环境,现在支持的仿真环境还是比较简单和单一的,现在可以使用的仿真游戏为 tag 游戏。

    同时,warpDrive提供了一个教程,其中第一部分的内容地址如下:

    http://colab.research.google.com/github/salesforce/warp-drive/blob/master/tutorials/tutorial-1-warp_drive_basics.ipynb

    由于上面的教程代码存在一定的问题,于是个人修改了一版:

    import numpy as np
    
    from warp_drive.managers.data_manager import CUDADataManager
    from warp_drive.managers.function_manager import (
        CUDAFunctionManager, CUDALogController, CUDASampler, CUDAEnvironmentReset
    )
    from warp_drive.utils.data_feed import DataFeed
    
    
    source_code = """
    // A function to demonstrate how to manipulate data on the GPU.
    // This function increments each the random data array we pushed to the GPU before.
    // Each index corresponding to (env_id, agent_id) in the array is incremented by "agent_id + env_id".
    // Everything inside the if() loop runs in parallel for each agent and environment.
    //
    extern "C"{
        __global__ void cuda_increment(                               
                float* data,                                  
                int num_agents                                       
        )                                                            
        {                                                            
            int env_id = blockIdx.x;                                 
            int agent_id = threadIdx.x;                             
            if (agent_id < num_agents){                              
                int array_index = env_id * num_agents + agent_id;
                int increment = env_id + agent_id;
                data[array_index] += increment;
            }                                                            
        }   
    }
    """
    
    
    
    
    from timeit import Timer
    
    
    def push_random_data_and_increment_timer(
            num_runs=1,
            num_envs=2,
            num_agents=3,
            source_code=None
    ):
    
        assert source_code is not None
    
        def push_random_data(num_agents, num_envs):
            # Initialize the CUDA data manager
            cuda_data_manager = CUDADataManager(
                num_agents=num_agents,
                num_envs=num_envs,
                episode_length=100
            )
    
            # Create random data
            random_data = np.random.rand(num_envs, num_agents)
    
            # Push data from host to device
            data_feed = DataFeed()
            data_feed.add_data(
                name="random_data",
                data=random_data,
            )
            data_feed.add_data(
                name="num_agents",
                data=num_agents
            )
            cuda_data_manager.push_data_to_device(data_feed)
    
            return cuda_data_manager
    
    
        # Initialize the CUDA function manager
        def cuda_func_init():
            cuda_function_manager = CUDAFunctionManager(
                num_agents=num_agents, #cuda_data_manager.meta_info("n_agents"),
                num_envs=num_envs #cuda_data_manager.meta_info("n_envs")
            )
    
            # Load source code and initialize function
            cuda_function_manager.load_cuda_from_source_code(
                source_code,
                default_functions_included=False
            )
            cuda_function_manager.initialize_functions(["cuda_increment"])
            increment_function = cuda_function_manager._get_function("cuda_increment")
    
            return cuda_function_manager, increment_function
    
    
        def increment_data(cuda_data_manager, cuda_function_manager, increment_function):
            increment_function(
                cuda_data_manager.device_data("random_data"),
                cuda_data_manager.device_data("num_agents"),
                block=cuda_function_manager.block,
                grid=cuda_function_manager.grid
            )
    
    
        # set variable
        # cuda_data_manager = push_random_data(num_agents, num_envs)
    
        # cuda function init
        # cuda_function_manager, increment_function = cuda_func_init()
    
        # cuda function run
        # increment_data(cuda_data_manager, cuda_function_manager, increment_function)
    
    
        data_push_time = Timer(lambda: push_random_data(num_agents, num_envs)).timeit(number=num_runs)
    
    
        cuda_data_manager = push_random_data(num_agents, num_envs)
        cuda_function_manager, increment_function = cuda_func_init()
        program_run_time = Timer(lambda: increment_data(cuda_data_manager, cuda_function_manager, increment_function)).timeit(number=num_runs)
        print(cuda_data_manager.pull_data_from_device('random_data'))
    
        return {
            "data push times": data_push_time,
            "code run time": program_run_time
        }
    
    
    
    
    num_runs = 1000
    times = {}
    
    for scenario in [
        (1, 1),
        (1, 100),
        (1, 1000),
        (100, 1000),
        (1000, 1000)
    ]:
        num_envs, num_agents = scenario
        times.update(
            {
                f"envs={num_envs}, agents={num_agents}":
                push_random_data_and_increment_timer(
                    num_runs,
                    num_envs,
                    num_agents,
                    source_code
                )
            }
        )
    
    
    print(f"Times for {num_runs} function calls")
    print("*"*40)
    for key, value in times.items():
        print(f"{key:30}: mean data push times: {value['data push times']:10.5}s,	 mean increment times: {value['code run time']:10.5}s")
    
    
    '''
    print(cuda_data_manager._meta_info)
    print(cuda_data_manager._host_data)
    print(cuda_data_manager._device_data_pointer)
    print(cuda_data_manager._scalar_data_list)
    print(cuda_data_manager._reset_data_list)
    print(cuda_data_manager._log_data_list)
    print(cuda_data_manager._device_data_via_torch)
    print(cuda_data_manager._shared_constants)
    print(cuda_data_manager._shape)
    print(cuda_data_manager._dtype)
    
    print(tensor_on_device)
    time.sleep(300)
    
    '''

    运行环境: gtx1060 显卡

    WarpDrive 的github地址:

    https://github.com/salesforce/warp-drive

    gitee地址:

    https://gitee.com/devilmaycry812839668/warp-drive

    本博客是博主个人学习时的一些记录,不保证是为原创,个别文章加入了转载的源地址还有个别文章是汇总网上多份资料所成,在这之中也必有疏漏未加标注者,如有侵权请与博主联系。
  • 相关阅读:
    .net core 基于IIS发布
    所有开源播放器
    JWT的相关讲解
    .NET Core2.0 使用EF做数据操作
    任意的组合,数组或数组,数组或list,list或list不用循环得出匹配的总数和需要的字段列
    linq to sql学习
    winform文本框怎么实现html的placeholder效果
    [数据结构]-单链表实现栈
    [数据结构]-数组实现栈
    [数据结构]-单链表
  • 原文地址:https://www.cnblogs.com/devilmaycry812839668/p/15348610.html
Copyright © 2011-2022 走看看