zoukankan      html  css  js  c++  java
  • 在深度学习的视觉VISION领域数据预处理的魔法常数magic constant、黄金数值的具体计算形式: mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]

    ======================================================

      https://github.com/pytorch/vision/issues/3657   中对原始预处理过程中的具体代码形式进行了讨论:

    给出了对原始方法猜测后的具体的预处理数据的代码形式:

    import torch
    from torchvision import datasets, transforms as T
    
    transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()])
    dataset = datasets.ImageNet(".", split="train", transform=transform)
    
    means = []
    variances = []
    for img in subset(dataset):
        means.append(torch.mean(img))
        variances.append(torch.std(img)**2)
    
    mean = torch.mean(torch.stack(means), axis=0)
    std = torch.sqrt(torch.mean(torch.stack(variances), axis=0))

    回答:

    从回答上可以看到原始计算的时候采用了这个形式的计算,部分内容在:

     https://github.com/pytorch/vision/pull/1965   给出了更具体的解释:

     

     

     

    重点说明:

    We know that they were calculated them on a random subset of the train split of the ImageNet2012 dataset. Which images were used or even the sample size as well as the used transformation are unfortunately lost.

    同时作者对自己复现出的结果和原始结果的差距做了猜测和解释:

    In #1439 my calculated stds differed significantly from the values we used. This resulted from the fact that I previously used sqrt(mean([var(img) for img in dataset])) while we probably used mean([std(img) for img in dataset]). You can find the script I've used for all calculations here.

    作者在上一次复现的时候使用的代码:

    sqrt(mean([var(img) for img in dataset]))

    但是原始结果中的代码可能是:

    mean([std(img) for img in dataset])

    作者又给出了新的计算代码:

    https://gist.github.com/pmeier/f5e05285cd5987027a98854a5d155e27

    ============================================================

  • 相关阅读:
    创建文件夹 文件File操作方法
    C#WinForm4张纸牌窗体设计
    b/s结构和c/s结构
    sql 中 时间只显示日期
    视图
    js获取字符串的字节数
    触发器
    将xml字符串转换成dataset
    sql 集合查询 数据更新操作语句
    带有ANY(SOME)或ALL谓词的字查询
  • 原文地址:https://www.cnblogs.com/devilmaycry812839668/p/15592040.html
Copyright © 2011-2022 走看看