zoukankan      html  css  js  c++  java
  • UVa OJ 109 SCUD Busters (SCUD重磅炸弹)

    Time limit: 3.000 seconds

    Background

    Some problems are difficult to solve but have a simplification that is easy to solve. Rather than deal with the difficulties of constructing a model of the Earth (a somewhat oblate spheroid), consider a pre-Columbian flat world that is a 500 kilometer × 500 kilometer square.

    In the model used in this problem, the flat world consists of several warring kingdoms. Though warlike, the people of the world are strict isolationists; each kingdom is surrounded by a high (but thin) wall designed to both protect the kingdom and to isolate it. To avoid fights for power, each kingdom has its own electric power plant.

    When the urge to fight becomes too great, the people of a kingdom often launch missiles at other kingdoms. Each SCUD missile (Sanitary Cleansing Universal Destroyer) that lands within the walls of a kingdom destroys that kingdom's power plant (without loss of life).

    The Problem

    Given coordinate locations of several kingdoms (by specifying the locations of houses and the location of the power plant in a kingdom) and missile landings you are to write a program that determines the total area of all kingdoms that are without power after an exchange of missile fire.

    In the simple world of this problem kingdoms do not overlap. Furthermore, the walls surrounding each kingdom are considered to be of zero thickness. The wall surrounding a kingdom is the minimal-perimeter wall that completely surrounds all the houses and the power station that comprise a kingdom; the area of a kingdom is the area enclosed by the minimal-perimeter thin wall.

    There is exactly one power station per kingdom.

    There may be empty space between kingdoms.

    The Input

    The input is a sequence of kingdom specifications followed by a sequence of missile landing locations.

    A kingdom is specified by a number N ( 3 ≤ N ≤ 100 ) on a single line which indicates the number of sites in this kingdom. The next line contains the x and y coordinates of the power station, followed by N-1 lines of x, y pairs indicating the locations of homes served by this power station. A value of -1 for N indicates that there are no more kingdoms. There will be at least one kingdom in the data set.

    Following the last kingdom specification will be the coordinates of one or more missile attacks, indicating the location of a missile landing. Each missile location is on a line by itself. You are to process missile attacks until you reach the end of the file.

    Locations are specified in kilometers using coordinates on a 500 km by 500 km grid. All coordinates will be integers between 0 and 500 inclusive. Coordinates are specified as a pair of integers separated by white-space on a single line. The input file will consist of up to 20 kingdoms, followed by any number of missile attacks.

    The Output

    The output consists of a single number representing the total area of all kingdoms without electricity after all missile attacks have been processed. The number should be printed with (and correct to) two decimal places.

    Sample Input

    12
    3 3
    4 6
    4 11
    4 8
    10 6
    5 7
    6 6
    6 3
    7 9
    10 4
    10 9
    1 7
    5
    20 20
    20 40
    40 20
    40 40
    30 30
    3
    10 10
    21 10
    21 13
    -1
    5 5
    20 12

    Sample Output

    70.50

    Hint

    You may or may not find the following formula useful.

    Given a polygon described by the vertices v0, v1, ..., vn such that v0 = vn, the signed area of the polygon is given by

    fom

    where the x, y coordinates of vi = (xi, yi); the edges of the polygon are from vi to vi + 1 for i = 0 ... n - 1 .

    If the points describing the polygon are given in a counterclockwise direction, the value of a will be positive, and if the points of the polygon are listed in a clockwise direction, the value of a will be negative.

    Analysis

    计算几何类型的题目。需要用到三个基本算法,一是求凸包,二是判断点在多边形内,三是求多边形面积(题目中已给出)。关于凸包算法请详见Graham's Scan法。判断点在多边形内的算法有很多种,这里用到的是外积法:设待判断的点为p,逆时针或顺时针遍例多边形的每个点vn,将两个向量<p, vn>和<vn, vn + 1>做外积。如果对于多边形上所有的点,外积的符号都相同(顺时针为负,逆时针为正),则可断定p在多边形内。外积出现0,则表示p在边上,否则在多边形外。

    算法的思路很直接,实现也很简单,关键是这道题的测试数据太扯蛋了,让我郁闷了很久。题目中并未说明导弹打在墙上怎么办,只是说“... whithin the wall ...”。根据测试结果来看,打在墙上和打在据点上都要算打中。题目中还提到国家不会互相重叠“... kingdoms do not overlap.”,但测试表明数据里确有重叠的情况,因此在导弹击中后一定要跳出循环,否则会出现一弹多击的情况。

    Solution

    #include <algorithm>
    #include <functional>
    #include <iomanip>
    #include <iostream>
    #include <vector>
    #include <math.h>
    
    using namespace std;
    
    struct POINT {
    	int x; int y;
    	bool operator==(const POINT &other) {
    		return (x == other.x && y == other.y);
    	}
    } ptBase;
    
    typedef vector<POINT> PTARRAY;
    
    bool CompareAngle(POINT pt1, POINT pt2) {
    	pt1.x -= ptBase.x, pt1.y -= ptBase.y;
    	pt2.x -= ptBase.x, pt2.y -= ptBase.y;
    	return (pt1.x / sqrt((float)(pt1.x * pt1.x + pt1.y * pt1.y)) <
    		pt2.x / sqrt((float)(pt2.x * pt2.x + pt2.y * pt2.y)));
    }
    
    void CalcConvexHull(PTARRAY &vecSrc, PTARRAY &vecCH) {
    	ptBase = vecSrc.back();
    	sort(vecSrc.begin(), vecSrc.end() - 1, &CompareAngle);
    	vecCH.push_back(ptBase);
    	vecCH.push_back(vecSrc.front());
    	POINT ptLastVec = { vecCH.back().x - ptBase.x,
    		vecCH.back().y - ptBase.y };
    	PTARRAY::iterator i = vecSrc.begin();
    	for (++i; i != vecSrc.end() - 1; ++i) {
    		POINT ptCurVec = { i->x - vecCH.back().x, i->y - vecCH.back().y };
    		while (ptCurVec.x * ptLastVec.y - ptCurVec.y * ptLastVec.x < 0) {
    			vecCH.pop_back();
    			ptCurVec.x = i->x - vecCH.back().x;
    			ptCurVec.y = i->y - vecCH.back().y;
    			ptLastVec.x = vecCH.back().x - (vecCH.end() - 2)->x;
    			ptLastVec.y = vecCH.back().y - (vecCH.end() - 2)->y;
    		}
    		vecCH.push_back(*i);
    		ptLastVec = ptCurVec;
    	}
    	vecCH.push_back(vecCH.front());
    }
    
    int CalcArea(PTARRAY &vecCH) {
    	int nArea = 0;
    	for (PTARRAY::iterator i = vecCH.begin(); i != vecCH.end() - 1; ++i) {
    		nArea += (i + 1)->x * i->y - i->x * (i + 1)->y;
    	}
    	return nArea;
    }
    
    bool PointInConvexHull(POINT pt, PTARRAY &vecCH) {
    	for (PTARRAY::iterator i = vecCH.begin(); i != vecCH.end() - 1; ++i) {
    		int nX1 = pt.x - i->x, nY1 = pt.y - i->y;
    		int nX2 = (i + 1)->x - i->x, nY2 = (i + 1)->y - i->y;
    		if (nX1 * nY2 - nY1 * nX2 < 0) {
    			return false;
    		}
    	}
    	return true;
    }
    
    int main(void) {
    	vector<PTARRAY> vecKingdom;
    	POINT ptIn;
    	int aFlag[100] = {0}, nAreaSum = 0;
    	for (int nPtCnt; cin >> nPtCnt && nPtCnt >= 1;) {
    		PTARRAY vecSrc, vecCH;
    		cin >> ptIn.x >> ptIn.y;
    		vecSrc.push_back(ptIn);
    		for (; --nPtCnt != 0;) {
    			cin >> ptIn.x >> ptIn.y;
    			POINT &ptMin = vecSrc.back();
    			vecSrc.insert(vecSrc.end() - (ptIn.y > ptMin.y ||
    				(ptIn.y == ptMin.y && ptIn.x > ptMin.x)), ptIn);
    		}
    		CalcConvexHull(vecSrc, vecCH);
    		vecKingdom.push_back(vecCH);
    	}
    	while (cin >> ptIn.x >> ptIn.y) {
    		vector<PTARRAY>::iterator i = vecKingdom.begin();
    		for (int k = 0; i != vecKingdom.end(); ++i, ++k) {
    			if (PointInConvexHull(ptIn, *i) && aFlag[k] != 1) {
    				nAreaSum += CalcArea(*i);
    				aFlag[k] = 1;
    				break;
    			}
    		}
    	}
    	cout << setiosflags(ios::fixed) << setprecision(2);
    	cout << (float)nAreaSum / 2.0f << endl;
    	return 0;
    }
    



    知识共享许可协议 作者:王雨濛;新浪微博:@吉祥村码农;来源:《程序控》博客 -- http://www.cnblogs.com/devymex/
    此文章版权归作者所有(有特别声明的除外),转载必须注明作者及来源。您不能用于商业目的也不能修改原文内容。
  • 相关阅读:
    C盘扩容 无损分区 (摘录自百度经验)
    Jquery 实现表单提交按钮变灰,防止多次点击提交重复数据
    手机访问PC站时自动跳转到手机站
    C# String 前面不足位数补零的方法
    把页面翻译成繁体
    网页上传视频.MP4视频编码、音频编码配置
    同样的mp4文件,本地测试可以播放,浏览服务器页面时不能播放
    vue $refs给for循环出来的某一个添加样式
    vue 获取验证码倒计时
    判断两个数组的内容是否相同
  • 原文地址:https://www.cnblogs.com/devymex/p/1795391.html
Copyright © 2011-2022 走看看