zoukankan      html  css  js  c++  java
  • pytest封神之路第五步 参数化进阶

    用过unittest的朋友,肯定知道可以借助DDT实现参数化。用过JMeter的朋友,肯定知道JMeter自带了4种参数化方式(见参考资料)。pytest同样支持参数化,而且很简单很实用。

    语法

    在《pytest封神之路第三步 精通fixture》和《pytest封神之路第四步 内置和自定义marker》两篇文章中,都提到了pytest参数化。那么本文就趁着热乎,赶紧聊一聊pytest的参数化是怎么玩的。

    @pytest.mark.parametrize

    @pytest.mark.parametrize("test_input,expected", [("3+5", 8), ("2+4", 6), ("6*9", 42)])
    def test_eval(test_input, expected):
        assert eval(test_input) == expected
    
    • 可以自定义变量,test_input对应的值是"3+5" "2+4" "6*9",expected对应的值是8 6 42,多个变量用tuple,多个tuple用list

    • 参数化的变量是引用而非复制,意味着如果值是list或dict,改变值会影响后续的test

    • 重叠产生笛卡尔积

      import pytest
      
      
      @pytest.mark.parametrize("x", [0, 1])
      @pytest.mark.parametrize("y", [2, 3])
      def test_foo(x, y):
          pass
      

    @pytest.fixture()

    @pytest.fixture(scope="module", params=["smtp.gmail.com", "mail.python.org"])
    def smtp_connection(request):
        smtp_connection = smtplib.SMTP(request.param, 587, timeout=5)
    
    • 只能使用request.param来引用

    • 参数化生成的test带有ID,可以使用-k来筛选执行。默认是根据函数名[参数名]来的,可以使用ids来定义

      // list
      @pytest.fixture(params=[0, 1], ids=["spam", "ham"])
      // function
      @pytest.fixture(params=[0, 1], ids=idfn)
      

      使用--collect-only 命令行参数可以看到生成的IDs。

    参数添加marker

    我们知道了参数化后会生成多个tests,如果有些test需要marker,可以用pytest.param来添加

    marker方式

    # content of test_expectation.py
    import pytest
    
    
    @pytest.mark.parametrize(
        "test_input,expected",
        [("3+5", 8), ("2+4", 6), pytest.param("6*9", 42, marks=pytest.mark.xfail)],
    )
    def test_eval(test_input, expected):
        assert eval(test_input) == expected
    

    fixture方式

    # content of test_fixture_marks.py
    import pytest
    
    
    @pytest.fixture(params=[0, 1, pytest.param(2, marks=pytest.mark.skip)])
    def data_set(request):
        return request.param
    def test_data(data_set):
        pass
    

    pytest_generate_tests

    用来自定义参数化方案。使用到了hook,hook的知识我会写在《pytest hook》中,欢迎关注公众号dongfanger获取最新文章。

    # content of conf.py
    
    
    def pytest_generate_tests(metafunc):
        if "test_input" in metafunc.fixturenames:
            metafunc.parametrize("test_input", [0, 1])
    
    # content of test.py
    
    
    def test(test_input):
        assert test_input == 0
    
    • 定义在conftest.py文件中
    • metafunc有5个属性,fixturenames,module,config,function,cls
    • metafunc.parametrize() 用来实现参数化
    • 多个metafunc.parametrize() 的参数名不能重复,否则会报错

    参数化误区

    在讲示例之前,先简单分享我的菜鸡行为。假设我们现在需要对50个接口测试,验证某一角色的用户访问这些接口会返回403。我的做法是,把接口请求全部参数化了,test函数里面只有断言,伪代码大致如下

    def api():
        params = []
        def func():
            return request()
        params.append(func)
        ...
    
    
    @pytest.mark.parametrize('req', api())
    def test():
        res = req()
        assert res.status_code == 403
    

    这样参数化以后,会产生50个tests,如果断言失败了,会单独标记为failed,不影响其他test结果。咋一看还行,但是有个问题,在回归的时候,可能只需要验证其中部分接口,就没有办法灵活的调整,必须全部跑一遍才行。这是一个相对错误的示范,至于正确的应该怎么写,相信每个人心中都有一个答案,能解决问题就是ok的。我想表达的是,参数化要适当,不要滥用,最好只对测试数据做参数化

    实践

    本文的重点来了,参数化的语法比较简单,实际应用是关键。这部分通过11个例子,来实践一下。示例覆盖的知识点有点多,建议留大段时间细看。

    1.使用hook添加命令行参数--all,"param1"是参数名,带--all参数时是range(5) == [0, 1, 2, 3, 4],生成5个tests。不带参数时是range(2)。

    # content of test_compute.py
    
    
    def test_compute(param1):
        assert param1 < 4
    
    
    # content of conftest.py
    
    
    def pytest_addoption(parser):
        parser.addoption("--all", action="store_true", help="run all combinations")
    def pytest_generate_tests(metafunc):
        if "param1" in metafunc.fixturenames:
            if metafunc.config.getoption("all"):
                end = 5
            else:
                end = 2
            metafunc.parametrize("param1", range(end))
    
    

    2.testdata是测试数据,包括2组。test_timedistance_v0不带ids。test_timedistance_v1带list格式的ids。test_timedistance_v2的ids为函数。test_timedistance_v3使用pytest.param同时定义测试数据和id。

    # content of test_time.py
    from datetime import datetime, timedelta
    
    import pytest
    
    testdata = [
        (datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1)),
        (datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1)),
    ]
    
    
    @pytest.mark.parametrize("a,b,expected", testdata)
    def test_timedistance_v0(a, b, expected):
        diff = a - b
        assert diff == expected
    
    
    @pytest.mark.parametrize("a,b,expected", testdata, ids=["forward", "backward"])
    def test_timedistance_v1(a, b, expected):
        diff = a - b
        assert diff == expected
    
    
    def idfn(val):
        if isinstance(val, (datetime,)):
            # note this wouldn't show any hours/minutes/seconds
            return val.strftime("%Y%m%d")
    
    
    @pytest.mark.parametrize("a,b,expected", testdata, ids=idfn)
    def test_timedistance_v2(a, b, expected):
        diff = a - b
        assert diff == expected
    
    
    @pytest.mark.parametrize(
        "a,b,expected",
        [
            pytest.param(
                datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1), id="forward"
            ),
            pytest.param(
                datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1), id="backward"
            ),
        ],
    )
    def test_timedistance_v3(a, b, expected):
        diff = a - b
        assert diff == expected
    
    

    3.兼容unittest的testscenarios

    # content of test_scenarios.py
    def pytest_generate_tests(metafunc):
        idlist = []
        argvalues = []
        for scenario in metafunc.cls.scenarios:
            idlist.append(scenario[0])
            items = scenario[1].items()
            argnames = [x[0] for x in items]
            argvalues.append([x[1] for x in items])
        metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class")
    
    
    scenario1 = ("basic", {"attribute": "value"})
    scenario2 = ("advanced", {"attribute": "value2"})
    
    
    class TestSampleWithScenarios:
        scenarios = [scenario1, scenario2]
    
        def test_demo1(self, attribute):
            assert isinstance(attribute, str)
    
        def test_demo2(self, attribute):
            assert isinstance(attribute, str)
    
    

    4.初始化数据库连接

    # content of test_backends.py
    import pytest
    
    
    def test_db_initialized(db):
        # a dummy test
        if db.__class__.__name__ == "DB2":
            pytest.fail("deliberately failing for demo purposes")
    
    
    # content of conftest.py
    import pytest
    
    
    def pytest_generate_tests(metafunc):
        if "db" in metafunc.fixturenames:
            metafunc.parametrize("db", ["d1", "d2"], indirect=True)
    
    
    class DB1:
        "one database object"
    
    
    class DB2:
        "alternative database object"
    
    
    @pytest.fixture
    def db(request):
        if request.param == "d1":
            return DB1()
        elif request.param == "d2":
            return DB2()
        else:
            raise ValueError("invalid internal test config")
    
    

    5.如果不加indirect=True,会生成2个test,fixt的值分别是"a"和"b"。如果加了indirect=True,会先执行fixture,fixt的值分别是"aaa"和"bbb"。indirect=True结合fixture可以在生成test前,对参数变量额外处理。

    import pytest
    
    
    @pytest.fixture
    def fixt(request):
        return request.param * 3
    
    
    @pytest.mark.parametrize("fixt", ["a", "b"], indirect=True)
    def test_indirect(fixt):
        assert len(fixt) == 3
    
    

    6.多个参数时,indirect赋值list可以指定某些变量应用fixture,没有指定的保持原值。

    # content of test_indirect_list.py
    import pytest
    
    
    @pytest.fixture(scope="function")
    def x(request):
        return request.param * 3
    
    
    @pytest.fixture(scope="function")
    def y(request):
        return request.param * 2
    
    
    @pytest.mark.parametrize("x, y", [("a", "b")], indirect=["x"])
    def test_indirect(x, y):
        assert x == "aaa"
        assert y == "b"
    
    

    7.兼容unittest参数化

    # content of ./test_parametrize.py
    import pytest
    
    
    def pytest_generate_tests(metafunc):
        # called once per each test function
        funcarglist = metafunc.cls.params[metafunc.function.__name__]
        argnames = sorted(funcarglist[0])
        metafunc.parametrize(
            argnames, [[funcargs[name] for name in argnames] for funcargs in funcarglist]
        )
    
    
    class TestClass:
        # a map specifying multiple argument sets for a test method
        params = {
            "test_equals": [dict(a=1, b=2), dict(a=3, b=3)],
            "test_zerodivision": [dict(a=1, b=0)],
        }
    
        def test_equals(self, a, b):
            assert a == b
    
        def test_zerodivision(self, a, b):
            with pytest.raises(ZeroDivisionError):
                a / b
    
    

    8.在不同python解释器之间测试对象序列化。python1把对象pickle-dump到文件。python2从文件中pickle-load对象。

    """
    module containing a parametrized tests testing cross-python
    serialization via the pickle module.
    """
    import shutil
    import subprocess
    import textwrap
    
    import pytest
    
    pythonlist = ["python3.5", "python3.6", "python3.7"]
    
    
    @pytest.fixture(params=pythonlist)
    def python1(request, tmpdir):
        picklefile = tmpdir.join("data.pickle")
        return Python(request.param, picklefile)
    
    
    @pytest.fixture(params=pythonlist)
    def python2(request, python1):
        return Python(request.param, python1.picklefile)
    
    
    class Python:
        def __init__(self, version, picklefile):
            self.pythonpath = shutil.which(version)
            if not self.pythonpath:
                pytest.skip("{!r} not found".format(version))
            self.picklefile = picklefile
    
        def dumps(self, obj):
            dumpfile = self.picklefile.dirpath("dump.py")
            dumpfile.write(
                textwrap.dedent(
                    r"""
                    import pickle
                    f = open({!r}, 'wb')
                    s = pickle.dump({!r}, f, protocol=2)
                    f.close()
                    """.format(
                        str(self.picklefile), obj
                    )
                )
            )
            subprocess.check_call((self.pythonpath, str(dumpfile)))
    
        def load_and_is_true(self, expression):
            loadfile = self.picklefile.dirpath("load.py")
            loadfile.write(
                textwrap.dedent(
                    r"""
                    import pickle
                    f = open({!r}, 'rb')
                    obj = pickle.load(f)
                    f.close()
                    res = eval({!r})
                    if not res:
                    raise SystemExit(1)
                    """.format(
                        str(self.picklefile), expression
                    )
                )
            )
            print(loadfile)
            subprocess.check_call((self.pythonpath, str(loadfile)))
    
    
    @pytest.mark.parametrize("obj", [42, {}, {1: 3}])
    def test_basic_objects(python1, python2, obj):
        python1.dumps(obj)
        python2.load_and_is_true("obj == {}".format(obj))
    
    

    9.假设有个API,basemod是原始版本,optmod是优化版本,验证二者结果一致。

    # content of conftest.py
    import pytest
    
    
    @pytest.fixture(scope="session")
    def basemod(request):
        return pytest.importorskip("base")
    
    
    @pytest.fixture(scope="session", params=["opt1", "opt2"])
    def optmod(request):
        return pytest.importorskip(request.param)
    
    
    # content of base.py
    
    
    def func1():
        return 1
    
    # content of opt1.py
    
    
    def func1():
        return 1.0001
    
    # content of test_module.py
    def test_func1(basemod, optmod):
        assert round(basemod.func1(), 3) == round(optmod.func1(), 3)
    

    10.使用pytest.param添加marker和id。

    # content of test_pytest_param_example.py
    import pytest
    
    
    @pytest.mark.parametrize(
        "test_input,expected",
        [
            ("3+5", 8),
            pytest.param("1+7", 8, marks=pytest.mark.basic),
            pytest.param("2+4", 6, marks=pytest.mark.basic, id="basic_2+4"),
            pytest.param(
                "6*9", 42, marks=[pytest.mark.basic, pytest.mark.xfail], id="basic_6*9"
            ),
        ],
    )
    def test_eval(test_input, expected):
        assert eval(test_input) == expected
    
    

    11.使用pytest.raises让部分test抛出Error。

    from contextlib import contextmanager
    
    import pytest
    
    
    // 3.7+ from contextlib import nullcontext as does_not_raise
    @contextmanager
    def does_not_raise():
        yield
    
    
    @pytest.mark.parametrize(
        "example_input,expectation",
        [
            (3, does_not_raise()),
            (2, does_not_raise()),
            (1, does_not_raise()),
            (0, pytest.raises(ZeroDivisionError)),
        ],
    )
    def test_division(example_input, expectation):
        """Test how much I know division."""
        with expectation:
            assert (6 / example_input) is not None
    
    

    简要回顾

    本文先讲了参数化的语法,包括marker,fixture,hook方式,以及如何给参数添加marker,然后重点列举了几个实战示例。参数化用好了能节省编码,达到事半功倍的效果。

    参考资料

    docs-pytest-org-en-stable

    JMeter4种参数化方式,请阅读公众号《三道题加油站 (2)》


    所有文章公众号【测试开发刚哥】首发!

    版权申明:本文为博主原创文章,转载请保留原文链接及作者。
  • 相关阅读:
    ruby 中的respond_to (转)
    outlook最小化到托盘的设置方法
    FCKeditor 在VS2008下的用法
    暴风影音2009开机启动关闭方法
    构建自己的不可替代性
    MySQL安装1045错解决办法(绝对经典)
    如何学好C++,用好类库很重要
    转:什么是重构
    转:C++堆与栈的区别
    SQL Server 中的索引
  • 原文地址:https://www.cnblogs.com/df888/p/13721501.html
Copyright © 2011-2022 走看看