zoukankan      html  css  js  c++  java
  • 使用修改版Dancing link X (舞蹈链)求解aquarium游戏

      如果把舞蹈表的所有行的消除条件,改成覆盖总值达到n后消除,而不是覆盖总值达到1后消除,并且覆盖的行值也不是1,那会怎么样?

      就变成了多值覆盖游戏!(其实这不就是舞蹈链的重复覆盖特殊情况了嘛)

      正好这里有个游戏要解:https://www.puzzle-aquarium.com/里面的aquarium游戏,规则是:

    1、游戏棋盘被分成几块,每块被称为一个“水箱”
    2、游戏中你可以给每个水箱灌一些水,也可以让它空着
    3、同一个水箱内的水位是等高的。也即同一水箱内的同一行的单元格,要么都有水,要么都空着。
    4、棋盘外面的数字是该行或该列,灌水的单元格总数。

      说白了,每行每列所占的方格数必须正好等于右侧上面标明的限制数;同水箱内所有最高方格互相之间必须等高;同水箱内最高方格与最低方格内的所有方格必须全部填满。

      如下所示:

    图1.ID为69,467的谜面答案示例

      这里同水箱有固定不同的方格排布,可以事先把不同高度的排布在横竖方向上的占有数量记录下来;像上图左下角有个水箱,对应到排布就是:

      0分布;第9行有5个,第0列有1个,第1列有1个,第2列有1个,第3列有1个,第4列有1个;第8行有1个,第9行有5个,第0列有1个,第1列有2个,第2列有1个,第3列有1个,第4列有1个。

      舞蹈表的列可以这样设计:不同的水箱占据;不同行的横方向方格占据数量;不同列的竖方向方格占据数量。这样就可以达成上述的解题思路。为了舞蹈表出解时能判读对应排布,这里把行的id和水箱ID、水高度对应起来。

      主要的解决代码:

    """
    dominosa solver using Dancing Links.
    """
    from functools import reduce
    from dlmatrix import DancingLinksMatrix
    from alg_x import AlgorithmX
    import math
    import time
    
    __author__ = 'Funcfans'
    chess = []
    limits = []
    presum = []
    occupy = []
    heights = []
    currheights = []
    heightIdxs = []
    rowsize = 0
    maxnum = 0
    def insertToStr(origin, i, j, value):
        if(origin[i][j] != '+'):
            origin[i] =  origin[i][:j] + value + origin[i][j+1:]
    
    def get_names(maxnum):
        cnt = 0
        for i in range(maxnum):
            yield f'B({i})' # block
            cnt += 1
        #
        base = maxnum
        presum.append([])
        for i,limit in enumerate(limits[0]):
            if limit == 0:continue
            presum[0].append(base)
            yield (f'H({i},{limit})', limit)
            base += 1
        #
        presum.append([])
        for i,limit in enumerate(limits[1]):
            if limit == 0:continue
            presum[1].append(base)
            yield (f'V({i},{limit})', limit)
            base += 1
    #
    def compute_row(value, maxnum):
        row = []
        row.append(value)
        for d in range(2):
            for i,li in enumerate(occupy[d][value]):
                if li == 0:continue
                if li > limits[d][i]:return None
                row.append((presum[d][i],li))
        return row
    #
    class PrintFirstSol:
        def __init__(self, r, c):
            self.r = r
            self.c = c
    
        def __call__(self, sol):
            subSubImg = ' ' * rowsize
            solImg = reduce(lambda a,b:a+'
    '+b,[subSubImg] * rowsize)
            blockheight = [0] * maxnum
            startHeight = {}
            for v in sol.keys():
                #v.sort()
                blockheight[heights[v][0]] = heights[v][1]
                #
            #
            for i in range(rowsize)[::-1]:
                for j in range(rowsize):
                    if chess[i][j] not in startHeight:
                        startHeight[chess[i][j]] = i
                    if startHeight[chess[i][j]] - blockheight[chess[i][j]] + 1 > i:
                        chess[i][j] = -1
            subSubImg = '-'.join(['+'] * (rowsize+1))
            for i in range(rowsize):
                print(subSubImg)
                print('|',end='')
                for j in range(rowsize):
                    if chess[i][j] == -1:
                        print(' |',end='')
                    else:
                        print('*|',end='')
                print('')
            print(subSubImg)
            return True
    
    def main(fileName='aquarium69,467_3.txt'):
        currheights.clear()
        heights.clear()
        heightIdxs.clear()
        start = time.time()
        with open(fileName,'r') as f:
            chessStr = f.read()
        rowStrs = chessStr.split('
    ')
        global rowsize, maxnum
        rowsize = len(rowStrs) - 2
        colSize = len(rowStrs[0].split(' '))
        maxnum = 0
        for rowStr in rowStrs[:-2]:
            row = []
            for colStr in rowStr.split(' '):
                maxnum = maxnum if int(colStr) < maxnum else int(colStr)
                row.append(int(colStr))
            chess.append(row)
        #print(chess)
        list(map(lambda a:int(a),rowStrs[-1].split(' ')))
        limits.append(list(map(lambda a:int(a),rowStrs[-2].split(' '))))
        limits.append(list(map(lambda a:int(a),rowStrs[-1].split(' '))))
        maxnum += 1
        d = DancingLinksMatrix(get_names(maxnum))
        occupy.append([[0 for ___ in range(rowsize)] for __ in range(maxnum)])
        occupy.append([[0 for ___ in range(rowsize)] for __ in range(maxnum)])
        rowidx = 0
        for i in range(maxnum):
            row = compute_row(i, maxnum)
            #print(f'row ({i},0) :', row)
            d.add_sparse_row(row, already_sorted=True)
            currheights.append(1)
            heightIdxs.append([i])
            heights.append((i, 0))
            rowidx += 1
        for i,row in list(enumerate(chess))[::-1]:
            used = set()
            for j,col in enumerate(row):
                used.add(col)
                occupy[0][col][i] += 1
                occupy[1][col][j] += 1
            for col in used:
                row = compute_row(col, maxnum)
                if row == None or len(row) <= 0:continue
                #print(f'row ({col},{currheights[col]}) :', row)
                d.add_sparse_row(row, already_sorted=True)
                heights.append((col, currheights[col]))
                heightIdxs[col].append(rowidx)
                currheights[col] += 1
                rowidx += 1
        #print('heights :', heights)
        #print('heightIdxs :', heightIdxs)
        ansIdx=[0 ,62 ,63 ,25 ,37 ,52 ,32 ,54 ,40 ,17 ,34 ,19 ,24 ,13]
        #[0, 13, 17, 19, 24, 25, 32, 34, 37, 40, 52, 54, 62, 63]
        ansIdx.sort()
        #print(ansIdx)
        d.end_add()
        p = PrintFirstSol(rowsize, colSize)
        AlgorithmX(d, p)()
        end = time.time()
        print('the DLX runtime is : ' + str(end-start) + 's')
        
    
    if __name__ == "__main__":
        main('aquarium2,680,806_8.txt')
    View Code

      这里的解决算法有些变化,需要修改之前的模板。

      解出问题的算法:

    """
    Implementation of Donald Knuth's Algorithm X
    (http://arxiv.org/abs/cs/0011047).
    """
    
    from dlmatrix import DancingLinksMatrix, iterate_cell, MatrixDisplayer
    import string
    
    __author__ = 'FunCfans'
    
    testRow = [0 ,62 ,63 ,25 ,37 ,52 ,32 ,54 ,40 ,17 ,34 ,19 ,24 ,13]
    
    class AlgorithmX:
        """Callable object implementing the Algorithm X."""
    
        def __init__(self, matrix, callback, choose_min=True):
            """
            Creates an Algorithm_X object that solves the problem
            encoded in matrix.
            :param matrix: The DL_Matrix instance.
            :param callback: The callback called on every solution. callback has to
                             be a function receiving a dict argument
                             {row_index: linked list of the row}, and can return a
                             bool value. The solver keeps going on until the
                             callback returns a True value.
            :param choose_min: If True, the column with the minimum number of 1s is
                               chosen at each iteration, if False a random column is
                               chosen.
            """
            self.sol_dict = {}
            self.stop = False
            self.matrix = matrix
            self.callback = callback
            self.choose_min = choose_min
            self.deduce_cnt = 0
            self.depth = 0
            self.last_matrix = None
            self.delta_file = None
    
        def __call__(self):
            """Starts the search."""
            #self.delta_file = open('delta_matrix.txt','w',encoding='utf-8')
            #self._print(self.matrix.header, 'start')
            self._search(0)
            #self.delta_file.close()
    
        def _print(self, currrow, op):
            self.deduce_cnt += 1
            f = open('step/' + 'step%04d_' % (self.deduce_cnt) + op + '_' + str(currrow.indexes) + '_depth%d.txt'%(self.depth),'w',encoding='utf-8')
            printrow = {}
            rowcontent = ''
            content = 'curr ' + op + ' row : ' + str(currrow.indexes) + '
    '
            content = ''
            for col in iterate_cell(self.matrix.header, 'R'):
                content += 'col name : '+col.name+' col limit : ' + str(col.limit_num)
                for row in iterate_cell(col, 'D'):
                    content += ' ' + str((row.indexes[0],row.limit_num)) + ','
                    printrow[row.indexes[0]] = row
                content += '
    '
            content += '
    '
            for k,v in printrow.items():
                content += 'row %d : '%(k) + str((v.limit_num, v.indexes[1])) + '-->'
                qv = v.R
                while(qv != v):
                    content += str((qv.limit_num, qv.indexes[1])) + '-->'
                    qv = qv.R
                content += str((qv.limit_num, qv.indexes[1])) + '
    '
            f.write(content)
            f.close()
            
            if self.last_matrix == None:
                self.last_matrix = {}
                for col in iterate_cell(self.matrix.header, 'R'):
                    self.last_matrix[(col.name, col.indexes[0])] = collist = set()
                    for row in iterate_cell(col, 'D'):
                        collist.add(row.indexes[0])
            else:
                curr_matrix = {}
                for col in iterate_cell(self.matrix.header, 'R'):
                    curr_matrix[(col.name, col.indexes[0])] = collist = set()
                    for row in iterate_cell(col, 'D'):
                        collist.add(row.indexes[0])
                add_col = set()
                addv = set(curr_matrix.keys()).difference(set(self.last_matrix.keys()))
                if len(addv) > 0:
                    self.delta_file.write('add_col : '+str(addv) + ' ')
                delv = set(self.last_matrix.keys()).difference(set(curr_matrix.keys()))
                if len(delv) > 0:
                    self.delta_file.write('delete_col : '+str(delv) + ' ')
                for k,v in curr_matrix.items():
                    if k not in self.last_matrix:continue
                    addv = v.difference(self.last_matrix[k])
                    if len(addv) > 0:
                        self.delta_file.write('add_col_'+str(k)+' : '+str(addv))
                    self.delta_file.write(' ')
                for k,v in self.last_matrix.items():
                    if k not in curr_matrix:continue
                    delv = self.last_matrix[k].difference(v)
                    if len(delv) > 0:
                        self.delta_file.write('delete_col_'+str(k)+' : '+str(delv))
                    self.delta_file.write(' ')
                self.delta_file.write('
    ')
                self.last_matrix = curr_matrix
            
        
        def _search(self, k):
            # print(f"Size: {k}") # k is depth
            # print(f"Solution: {self.sol_dict}")
            # print("Matrix:")
            # print(self.matrix)
    
            if self.matrix.header.R == self.matrix.header:
                # matrix is empty, solution found
                if self.callback(self._create_sol(k)):
                    self.stop = True
                return
    
            if self.choose_min:
                col = self.matrix.min_column()
            else:
                col = self.matrix.random_column()
    
            # cover column col
            #
            row = col.D
            rows = []
            for row in iterate_cell(col, 'D'):
                rows.append(row)
            rows.sort(key=lambda x:x.limit_num,reverse=True)
            self.depth += 1
            for row in rows:
                if col.limit_num < row.limit_num:continue
                isValid = True
                for j in iterate_cell(row, 'R'):
                    if j.C.limit_num < j.limit_num:
                        isValid = False
                        break
                if not isValid:
                    continue
                self.sol_dict[k] = row
                col.limit_num -= row.limit_num
                row.D.U = row.U
                row.U.D = row.D
                col.size -= 1
                if col.limit_num == 0:
                    self.matrix.cover(col)
                for j in iterate_cell(row, 'R'):
                    j.C.limit_num -= j.limit_num
                    j.D.U = j.U
                    j.U.D = j.D
                    j.C.size -= 1
                    if j.C.limit_num == 0:
                        self.matrix.cover(j.C)
                execYou = True
                for j in iterate_cell(self.matrix.header, 'R'):
                    if j.limit_num > j.sum_limit_num:
                        execYou = False
                        break
                if execYou:
                    self._search(k + 1)
                if self.stop:
                    return
                # uncover columns
    
                for j in iterate_cell(row, 'L'):
                    if j.C.limit_num == 0:
                        self.matrix.uncover(j.C)
                    j.C.size += 1
                    j.D.U = j.U.D = j
                    j.C.limit_num += j.limit_num
                if col.limit_num == 0:
                    self.matrix.uncover(col)
                col.size += 1
                row.D.U = row.U.D = row
                col.limit_num += row.limit_num
            self.depth -= 1
            #
    
        def _create_sol(self, k):
            # creates a solution from the inner dict
            sol = {}
            for key, row in self.sol_dict.items():
                if key >= k:
                    continue
    
                tmp_list = [row.C.name]
                tmp_list.extend(r.C.name for r in iterate_cell(row, 'R'))
                sol[row.indexes[0]] = tmp_list
    
            return sol
    #
    def main():
        from_dense = (lambda row:[i for i, el in enumerate(row) if el])
        rows = [from_dense([0, 0, 1, 0, 1, 1, 0]),
                from_dense([1, 0, 0, 1, 0, 0, 1]),
                from_dense([0, 1, 1, 0, 0, 1, 0]),
                from_dense([1, 0, 0, 1, 0, 0, 0]),
                from_dense([0, 1, 0, 0, 0, 0, 1]),
                from_dense([0, 0, 0, 1, 1, 0, 1])]
        size = max(max(rows, key=max)) + 1
        d = DancingLinksMatrix(string.ascii_uppercase[:size])
        for row in rows:
            d.add_sparse_row(row, already_sorted=True)
        AlgorithmX(d, print)()
    #
    if __name__ == "__main__":
        main()
    alg_x.py

      舞蹈表数据结构:

    """
    Implementation of Donald Knuth's Dancing Links Sparse Matrix
    as a circular doubly linked list. (http://arxiv.org/abs/cs/0011047)
    """
    
    import random
    import numpy as np
    
    __author__ = "FunCfans"
    
    class CannotAddRowsError(Exception):
        pass
    #
    class EmptyDLMatrix(Exception):
        pass
    #
    class Cell:
        """
        Inner cell, storing 4 pointers to neighbors, a pointer to the column header
        and the indexes associated.
        """
        __slots__ = list("UDLRC") + ["indexes", "limit_num"]
    
        def __init__(self, limitNum=1):
            self.U = self.D = self.L = self.R = self
            self.C = None
            self.indexes = None
            self.limit_num = limitNum
    
        def __str__(self):
            return f"Node: {self.indexes}"
    
        def __repr__(self):
            return f"Cell[{self.indexes}]"
    
    
    class HeaderCell(Cell):
        """
        Column Header cell, a special cell that stores also a name and a size
        member.
        """
        __slots__ = ["size", "name", "is_first", "sum_limit_num"]
    
        def __init__(self, name, limitNum=1):
            super(HeaderCell, self).__init__(limitNum)
            self.size = 0
            self.name = name
            self.is_first = False
            self.sum_limit_num = 0
    
    class DancingLinksMatrix:
        """
        Dancing Links sparse matrix implementation.
        It stores a circular doubly linked list of 1s, and another list
        of column headers. Every cell points to its upper, lower, left and right
        neighbors in a circular fashion.
        """
    
        def __init__(self, columns):
            """
            Creates a DL_Matrix.
            :param columns: it can be an integer or an iterable. If columns is an
                            integer, columns columns are added to the matrix,
                            named C0,...,CN where N = columns -1. If columns is an
                            iterable, the number of columns and the names are
                            deduced from the iterable, else TypeError is raised.
                            The iterable may yield the names, or a tuple
                            (name,primary). primary is a bool value that is True
                            if the column is a primary one. If not specified, is
                            assumed that the column is a primary one.
            :raises TypeError, if columns is not a number neither an iterable.
            """
            self.header = HeaderCell("<H>")
            self.header.is_first = True
            self.rows = self.cols = 0
            self.col_list = []
            self._create_column_headers(columns)
    
        def _create_column_headers(self, columns):
            if isinstance(columns, int):
                columns = int(columns)
                column_names = ((f"C{i}", 1) for i in range(columns))
            else:
                try:
                    column_names = iter(columns)
                except TypeError:
                    raise TypeError("Argument is not valid")
    
            prev = self.header
            # links every column in a for loop
            for name in column_names:
                primary = True
                if isinstance(name, tuple) or isinstance(name, list):
                    name, limitNum = name
                else:
                    limitNum = 1
                cell = HeaderCell(name, limitNum)
                cell.indexes = (-1, self.cols)
                cell.is_first = False
                self.col_list.append(cell)
                if primary:
                    prev.R = cell
                    cell.L = prev
                    prev = cell
                self.cols += 1
    
            prev.R = self.header
            self.header.L = prev
    
        def add_sparse_row(self, row, already_sorted=False):
            """
            Adds a sparse row to the matrix. The row is in format
            [ind_0, ..., ind_n] where 0 <= ind_i < dl_matrix.ncols.
            If called after end_add is executed, CannotAddRowsError is raised.
            :param row: a sequence of integers indicating the 1s in the row.
            :param already_sorted: True if the row is already sorted,
                                   default is False. Use it for performance
                                   optimization.
            :raises CannotAddRowsError if end_add was already called.
            """
            if self.col_list is None:
                raise CannotAddRowsError()
    
            prev = None
            start = None
    
            if not already_sorted:
                row = sorted(row)
    
            cell = None
            for ind in row:
                if isinstance(ind, int):
                    ind = (ind, 1)
                cell = Cell(ind[1])
                cell.indexes = (self.rows, ind[0])
    
                if prev:
                    prev.R = cell
                    cell.L = prev
                else:
                    start = cell
    
                col = self.col_list[ind[0]]
                # link the cell with the previous one and with the right column
                # cells.
                last = col.U
                last.D = cell
                cell.U = last
                col.U = cell
                cell.D = col
                cell.C = col
                col.size += 1
                prev = cell
                col.sum_limit_num += ind[1]
    
            start.L = cell
            cell.R = start
            self.rows += 1
    
        def end_add(self):
            """
            Called when there are no more rows to be inserted. Not strictly
            necessary, but it can save some memory.
            """
            self.col_list = None
    
        def min_column(self):
            """
            Returns the column header of the column with the minimum number of 1s.
            :return: A column header.
            :raises: EmptyDLMatrix if the matrix is empty.
            """
            # noinspection PyUnresolvedReferences
            if self.header.R.is_first:
                raise EmptyDLMatrix()
    
            col_min = self.header.R
    
            for col in iterate_cell(self.header, 'R'):
                if not col.is_first and col.size < col_min.size:
                    col_min = col
    
            return col_min
    
        def random_column(self):
            """
            Returns a random column header. (The matrix header is never returned)
            :return: A column header.
            :raises: EmptyDLMatrix if the matrix is empty.
            """
            col = self.header.R
            if col is self.header:
                raise EmptyDLMatrix()
    
            n = random.randint(0, self.cols - 1)
    
            for _ in range(n):
                col = col.R
    
            if col.is_first:
                col = col.R
            return col
    
        def __str__(self):
            names = []
            m = np.zeros((self.rows, self.cols), dtype=np.uint8)
            rows, cols = set(), []
    
            for col in iterate_cell(self.header, 'R'):
                cols.append(col.indexes[1])
                # noinspection PyUnresolvedReferences
                names.append(col.name)
    
                for cell in iterate_cell(col, 'D'):
                    ind = cell.indexes
                    rows.add(ind[0])
                    m[ind] = 1
    
            m = m[list(rows)][:, cols]
            return "
    ".join([", ".join(names), str(m)])
    
        @staticmethod
        def coverRow(r, isadd=False):
            for j in iterate_cell(r, 'R'):
                if j.C.limit_num < j.limit_num:
                    return False
            for j in iterate_cell(r, 'R'):
                j.D.U = j.U
                j.U.D = j.D
                j.C.size -= 1
                j.C.sum_limit_num -= j.limit_num
                if isadd:
                    j.C.limit_num -= j.limit_num
            return True
        
        @staticmethod
        def checkCover(c):
            subLimitNum = {}
            for i in iterate_cell(c, 'D'):
                for j in iterate_cell(i, 'R'):
                    idx = j.indexes[1]
                    if idx not in subLimitNum:
                        subLimitNum[idx] = 0
                    subLimitNum[idx] += j.limit_num
                    if j.C.sum_limit_num - subLimitNum[idx] < j.C.limit_num:
                        return False
                    
            return True
        
        @staticmethod
        def cover(c, isadd=False):
            """
            Covers the column c by removing the 1s in the column and also all
            the rows connected to them.
            :param c: The column header of the column that has to be covered.
            """
            # print("Cover column", c.name)
            c.R.L = c.L
            c.L.R = c.R
    
            for i in iterate_cell(c, 'D'):
                DancingLinksMatrix.coverRow(i, isadd)
            return True
    
        @staticmethod
        def uncoverRow(r, isadd=False):
            for j in iterate_cell(r, 'L'):
                j.C.sum_limit_num += j.limit_num
                j.C.size += 1
                j.D.U = j.U.D = j
                if isadd:
                    j.C.limit_num += j.limit_num
            return True
    
        @staticmethod
        def uncover(c, isadd=False):
            """
            Uncovers the column c by readding the 1s in the column and also all
            the rows connected to them.
            :param c: The column header of the column that has to be uncovered.
            """
            # print("Uncover column", c.name)
            for i in iterate_cell(c, 'U'):
                DancingLinksMatrix.uncoverRow(i, isadd)
    
            c.R.L = c.L.R = c
    
    
    def iterate_cell(cell, direction):
        cur = getattr(cell, direction)
        while cur is not cell:
            yield cur
            cur = getattr(cur, direction)
    
    
    # TODO to be completed
    class MatrixDisplayer:
        def __init__(self, matrix):
            dic = {}
    
            for col in iterate_cell(matrix.header, 'R'):
                dic[col.indexes] = col
    
            for col in iterate_cell(matrix.header, 'R'):
                first = col.D
                dic[first.indexes] = first
                for cell in iterate_cell(first, 'D'):
                    if cell is not col:
                        dic[cell.indexes] = cell
    
            self.dic = dic
            self.rows = matrix.rows
            self.cols = matrix.cols
    
        def print_matrix(self):
            m = {}
    
            for i in range(-1, self.rows):
                for j in range(0, self.cols):
                    cell = self.dic.get((i, j))
                    if cell:
                        if i == -1:
                            m[0, 2 * j] = cell.name+','+str(cell.limit_num)
                        else:
                            m[2 * (i + 1), 2 * j] = "X"+','+str(cell.limit_num)
    
            for i in range(-1, self.rows * 2):
                for j in range(0, self.cols * 2):
                    print(m.get((i, j), "   "), end="")
                print()
    
    
    if __name__ == "__main__":
        def from_dense(row):
            return [i for i, el in enumerate(row) if el]
    
        r = [from_dense([1, 0, 0, 1, 0, 0, 1]),
             from_dense([1, 0, 0, 1, 0, 0, 0]),
             from_dense([0, 0, 0, 1, 1, 0, 1]),
             from_dense([0, 0, 1, 0, 1, 1, 0]),
             from_dense([0, 1, 1, 0, 0, 1, 1]),
             from_dense([0, 1, 0, 0, 0, 0, 1])]
    
        d = DancingLinksMatrix("1234567")
    
        for row in r:
            d.add_sparse_row(row, already_sorted=True)
        d.end_add()
    
        p = MatrixDisplayer(d)
        p.print_matrix()
    
        # print(d.rows)
        # print(d.cols)
        # print(d)
    
        mc = d.min_column()
        # print(mc)
    
        d.cover(mc)
        # print(d)
    
        p.print_matrix()
    dlmatrix.py

      为了能获取谜面,我们需要把谜面转换为文件,这里的谜面排布与star battle类似,稍微改一下代码就可以用了:

    from lxml import etree
    from selenium import webdriver
    from selenium.webdriver.chrome.options import Options
    import copy
    deepcopy = copy.deepcopy
    monthlyUrl = 'https://www.puzzle-aquarium.com/?size=11'
    weeklyUrl = 'https://www.puzzle-aquarium.com/?size=10'
    dailyUrl = 'https://www.puzzle-aquarium.com/?size=9'
    url = 'https://www.puzzle-aquarium.com/?size=8'
    #
    def getChessByChrome():
        path = r'D:chromedriver.exe'
        chrome_options = Options()
        #后面的两个是固定写法 必须这么写
        chrome_options.add_argument('--headless')
        chrome_options.add_argument('--disable-gpu')
        driver = webdriver.Chrome(executable_path=path,chrome_options=chrome_options)
        try:
            driver.set_page_load_timeout(30)
            driver.get(url)
        except Exception as e:
            print(e)
        source = driver.page_source
        driver.quit()
        return source
    #
    def getChessByFile():
        with open('aquarium.html','r',encoding='utf-8') as f:source=f.read()
        return source
    #
    def solve():
        if url.find('size=') == -1:
            size = 0
        else:
            size = url.split('size=')[1]
            size = int(size)
        source = getChessByChrome()
        htree = etree.HTML(source)
        chessSize = len(htree.xpath('//div[@id="game"]/div/div'))
        puzzleId = htree.xpath('//div[@class="puzzleInfo"]/p/span/text()')
        if len(puzzleId) != 0:
            puzzleId = puzzleId[0]
        else:
            puzzleId = htree.xpath('//div[@class="puzzleInfo"]/p/text()')[0]
        chessSize = round(chessSize**0.5)
        chess = [[-1 for _ in range(chessSize)] for __ in range(chessSize)]
        borderss = [['' for _ in range(chessSize)] for __ in range(chessSize)]
        chessStr = ''
        maxBlockNumber = 0
        # br: on the right; bl: on the left; bb: on the down; bt: on the up
        for i,className in enumerate(htree.xpath('//div[@id="game"]/div/div[contains(@class,"cell")]')):
            x = i // chessSize
            y = i % chessSize
            value = className.xpath('./@class')[0]
            if value[:4] != 'cell':
                continue
            value = value.replace('cell selectable','')
            value = value.replace('cell-off','')
            borderss[x][y] = value
        for i in range(chessSize):
            for j in range(chessSize):
                if chess[i][j] != -1:
                    continue
                queue = [(i, j)]
                chess[i][j] = str(maxBlockNumber)
                while len(queue) > 0:
                    oldQueue = deepcopy(queue)
                    queue = []
                    for pos in oldQueue:
                        x, y = pos[0], pos[1]
                        #
                        if x > 0 and borderss[x][y].find('bt') == -1 and chess[x-1][y] == -1:
                            queue.append((x-1, y))
                            chess[x-1][y] = chess[i][j]
                        #
                        if x < chessSize - 1 and borderss[x][y].find('bb') == -1 and chess[x+1][y] == -1:
                            queue.append((x+1, y))
                            chess[x+1][y] = chess[i][j]
                        #
                        if y > 0 and borderss[x][y].find('bl') == -1 and chess[x][y-1] == -1:
                            queue.append((x, y-1))
                            chess[x][y-1] = chess[i][j]
                        #
                        if y < chessSize - 1 and borderss[x][y].find('br') == -1 and chess[x][y+1] == -1:
                            queue.append((x, y+1))
                            chess[x][y+1] = chess[i][j]
                        #
                maxBlockNumber += 1
        chessStr = '
    '.join(' '.join(chessRow) for chessRow in chess)
        chessStr += '
    ' + ' '.join(htree.xpath('//div[@class="cell task h"]/text()'))
        chessStr += '
    ' + ' '.join(htree.xpath('//div[@class="cell task v"]/text()'))
        with open('aquarium' + puzzleId + '_' + str(size) + '.txt','w') as f:f.write(chessStr)
    #
    if __name__ == '__main__':
        solve()
    getAquariumChess.py

      抓取10*10 easy,ID为69,467的谜面,储存文件并执行上述代码,结果如下:

    +-+-+-+-+-+-+-+-+-+-+
    | | | |*|*|*|*|*|*|*|
    +-+-+-+-+-+-+-+-+-+-+
    | | | | |*| | | | |*|
    +-+-+-+-+-+-+-+-+-+-+
    | | | |*|*| | |*|*|*|
    +-+-+-+-+-+-+-+-+-+-+
    | | |*|*|*| | |*|*|*|
    +-+-+-+-+-+-+-+-+-+-+
    | | |*|*|*|*| | | |*|
    +-+-+-+-+-+-+-+-+-+-+
    | |*|*|*|*|*|*| | | |
    +-+-+-+-+-+-+-+-+-+-+
    |*|*|*|*|*|*|*| | | |
    +-+-+-+-+-+-+-+-+-+-+
    |*|*|*| |*| |*|*|*| |
    +-+-+-+-+-+-+-+-+-+-+
    |*| |*|*|*|*|*|*|*|*|
    +-+-+-+-+-+-+-+-+-+-+
    | | | | | |*|*|*|*|*|
    +-+-+-+-+-+-+-+-+-+-+
    the DLX runtime is : 24.061376333236694s

      与示例谜底相同,大功告成!

      (一定要有版本管理的习惯,不然会吧自己坑进去。这里为了debug有瑕疵的算法,没有保存就把原先可能是正确的代码给修掉了T_T)

  • 相关阅读:
    爱情戒指
    李小龙
    20分钟
    大话JAVA(二)
    编程高手
    Free Computer Books, Free eBooks and Read Free Books Online
    (06) [修正版] 判断整数序列是不是二元查找树的后序遍历结果
    [原创]DateTime在使用 format Custom Date and Time Format Strings时遇到的问题和解决方法
    [原创]00:矩形算法题二分法的扩展(2分法 * 2分法)
    用堆栈和用递归分别实现倒序打印
  • 原文地址:https://www.cnblogs.com/dgutfly/p/12036659.html
Copyright © 2011-2022 走看看