zoukankan      html  css  js  c++  java
  • 论文《A Generative Entity-Mention Model for Linking Entities with Knowledge Base》

    A Generative Entity-Mention Model for Linking Entities with Knowledge Base

     

    一.主要方法

    提出了一种生成概率模型,叫做entity-mention model.

    Explanation:

    In our model, each name mention to be linked is modeled as a sample generated through a three-step generative story, and the entity knowledge is encoded in the distribution of entities in document P(e), the distribution of possible names of a specific entity P(s|e), and the distribution of possible contexts of a specific entity P(c|e). To find the referent entity of a name mention, our method combines the evidences from all the three distributions P(e), P(s|e) and P(c|e).

    The P(e), P(s|e) and P(c|e) are respectively called the entity popularity model, the entity name model and the entity context model

    二.相关介绍

    建模

    Given a set of name mentions M = {m1, m2, …, mk} contained in documents and a knowledge base KB containing a set of entities E = {e1, e2, …, en}, an entity linking system is a function s : M ® E which links these name mentions to their referent entities in KB.

    Popularity Knowledge

             实体的流行度知识告诉我们一个实体出现在文档中的可能性

    Name Knowledge

             名称知识告诉我们实体的可能名称,以及名称引用特定实体的可能性。

    Context Knowledge

             上下文知识告诉我们一个实体出现在特定上下文中的可能性。

    三.The Generative Entity-Mention Model for Entity Linking

    Explanation

     

    1. 首先,该模型根据P(e)中实体的分布情况,从给定知识库中选择提及名称的引用实体e。
    2. 其次,该模型根据被引用实体P(s|e)的可能名称的分布情况输出所述名称的名称s。
    3. 最后,模型根据被引用实体P(c|e)可能的上下文分布输出所提到的名称的上下文c。

    model

    The probability of a name mention m (its context is c and its name is s) referring to a specific entity e can be expressed as the following formula (here assume that s and c are independent):

                                                  

             Give a name mention m, to perform entity linking, we need to find the entity e which maximizes the probability P(e|m).

                   

    Candidate Selection

    building a name-to-entity dictionary using the redirect links, disambiguation pages, anchor texts of Wikipedia, then the candidate entities of a name mention are selected by finding its name’s corresponding entry in the dictionary

    四.Model Estimation

    Entity Popularity Model

            ----》

    where Count(e) is the count of the name mentions whose referent entity is e, and the |M| is the total name mention size.

    Entity Name Model

             比如,我们希望 P(Michael Jordan|Michael Jeffrey Jordan) 高,,P(MJ|Michael Jeffrey Jordan) 也高。 P(Michael I. Jordan|Michael Jeffrey Jordan) 应该是0.

             因此,名称模型可以通过首先从数据集中收集所有(实体、名称)对来估计。

            

             缺点:它不能正确地处理一个不可见的实体或一个不可见的名称。

    Eg: “MJ”在Wikipedia指的并不是Michael Jeffrey Jordan, 这个the name model 将不能识别 “MJ” 就是Michael Jeffrey Jordan.

        ↓

    1) It is retained (translated into itself);

    2) It is translated into its acronym;

    3) It is omitted(translated into the word NULL);

    4) It is translated into another word (misspelling or alias).

     

     

    wheree is a normalization factor, f is the full name of entity e, lf is the length of f, ls is the length of the name s, si the i th word of s, fj is the j th word of f and t(si|fj) is the lexical translation probability which indicates the probability of a word fj in the full name will be written as si in the output name.

    Entity Context Model

    例如:

    C1: __wins NBA MVP.

    C2: __is a researcher in machine learning

     

    P(C1|Michael Jeffrey Jordan)应该很高,因为NBA球员迈克尔杰弗里乔丹经常出现在C1和P(C2|Michael Jeffrey Jordan)应该是非常低的,因为他很少出现在C2.

     

    a context c containing n terms t1,t2…tn (term: a word; a named entity; a Wikipedia concept) ,the entity context model estimates the probability P(c|e) as

                                                  

                      

             where Pg(t) is a general language model which is estimated using the whole Wikipedia data, and the optimal value of λ is set to 0.2

                         

    where Counte(t) is the frequency of occurrences of a term t in the contexts of the name mentions whose referent entity is e

    The NIL Entity Problem

             假设:“如果一个名字被提到是指一个特定的实体,那么这个名字被提到的概率是由特定实体的模型产生的,应该显著高于由一般语言模型产生的概率                  

             1. add a pseudo entity, the NIL entity, into the knowledge base

    2. the probability of a name mention is generated by the NIL entity is higher than all other entities in Knowledge base, we link the name mention to the NIL entity.

                               

    五.Experiments

     

  • 相关阅读:
    直击视频会议行业五大痛点提出企业视频会议通话完美解决方案
    网页直播/点播播放器支持httpflv/rtmp/m3u8等播放音视频流媒体播放器EasyPlayerRTMPiOS播放视频宽高变化导致播放器停止运行的问题解决
    流媒体音视频服务云管理平台EasyNVS平台中视频播放页面出现错误码的问题解决
    高稳定、低延时、高并发RTMP播放器流媒体音视频播放器EasyPlayerRTMPiOS器如何将核心代码打包成静态库
    网页直播/点播播放器支持httpflv/rtmp/m3u8等播放流媒体音视频播放器EasyPlayerRTMPiOS使用YUV渲染画面的方法
    网页全终端安防视频流媒体播放器EasyPlayer.js如何实现在web浏览器播放H.265编码视频?
    网页直播/点播播放器支持httpflv/rtmp/m3u8等播放音视频流媒体播放器EasyPlayerRTMPiOS卡顿问题的解决及设置方法
    HLS播放器RTSP播放器支持8K播放且低延时高并发全功能流媒体播放器EasyPlayer搭建之HTML中 px,em,rem该如何区别?
    移动端与PC端无缝衔接视频会议系统EasyRTC视频会议通话系统之会议录像检索回看功能解析
    企业远程会议系统EasyRTC视频会议通话软件如何保证会议的通话质量、噪音消除、信息高效共享及系统集成
  • 原文地址:https://www.cnblogs.com/dhName/p/11078630.html
Copyright © 2011-2022 走看看