zoukankan      html  css  js  c++  java
  • pytorch之 activation funcion

     1 import torch
     2 import torch.nn.functional as F
     3 from torch.autograd import Variable
     4 import matplotlib.pyplot as plt
     5 
     6 # fake data
     7 x = torch.linspace(-5, 5, 200)  # x data (tensor), shape=(100, 1)
     8 x = Variable(x)
     9 x_np = x.data.numpy()   # numpy array for plotting
    10 
    11 # following are popular activation functions
    12 y_relu = torch.relu(x).data.numpy()
    13 y_sigmoid = torch.sigmoid(x).data.numpy()
    14 y_tanh = torch.tanh(x).data.numpy()
    15 y_softplus = F.softplus(x).data.numpy() # there's no softplus in torch
    16 # y_softmax = torch.softmax(x, dim=0).data.numpy() softmax is a special kind of activation function, it is about probability
    17 
    18 # plt to visualize these activation function
    19 plt.figure(1, figsize=(8, 6))
    20 plt.subplot(221)
    21 plt.plot(x_np, y_relu, c='red', label='relu')
    22 plt.ylim((-1, 5))
    23 plt.legend(loc='best')
    24 
    25 plt.subplot(222)
    26 plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
    27 plt.ylim((-0.2, 1.2))
    28 plt.legend(loc='best')
    29 
    30 plt.subplot(223)
    31 plt.plot(x_np, y_tanh, c='red', label='tanh')
    32 plt.ylim((-1.2, 1.2))
    33 plt.legend(loc='best')
    34 
    35 plt.subplot(224)
    36 plt.plot(x_np, y_softplus, c='red', label='softplus')
    37 plt.ylim((-0.2, 6))
    38 plt.legend(loc='best')
    39 
    40 plt.show()
  • 相关阅读:
    mongodb简介
    tomcat简介
    date的详细说明
    30岁前成功的12条黄金法则
    2012春晚经典语录
    统计文件中某个单词出现的次数
    nginx简介
    ATM取款机系统模拟仿真
    十三种时间管理方法
    笔试常见的智力题 附答案
  • 原文地址:https://www.cnblogs.com/dhName/p/11742877.html
Copyright © 2011-2022 走看看