zoukankan      html  css  js  c++  java
  • pytorch之 activation funcion

     1 import torch
     2 import torch.nn.functional as F
     3 from torch.autograd import Variable
     4 import matplotlib.pyplot as plt
     5 
     6 # fake data
     7 x = torch.linspace(-5, 5, 200)  # x data (tensor), shape=(100, 1)
     8 x = Variable(x)
     9 x_np = x.data.numpy()   # numpy array for plotting
    10 
    11 # following are popular activation functions
    12 y_relu = torch.relu(x).data.numpy()
    13 y_sigmoid = torch.sigmoid(x).data.numpy()
    14 y_tanh = torch.tanh(x).data.numpy()
    15 y_softplus = F.softplus(x).data.numpy() # there's no softplus in torch
    16 # y_softmax = torch.softmax(x, dim=0).data.numpy() softmax is a special kind of activation function, it is about probability
    17 
    18 # plt to visualize these activation function
    19 plt.figure(1, figsize=(8, 6))
    20 plt.subplot(221)
    21 plt.plot(x_np, y_relu, c='red', label='relu')
    22 plt.ylim((-1, 5))
    23 plt.legend(loc='best')
    24 
    25 plt.subplot(222)
    26 plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
    27 plt.ylim((-0.2, 1.2))
    28 plt.legend(loc='best')
    29 
    30 plt.subplot(223)
    31 plt.plot(x_np, y_tanh, c='red', label='tanh')
    32 plt.ylim((-1.2, 1.2))
    33 plt.legend(loc='best')
    34 
    35 plt.subplot(224)
    36 plt.plot(x_np, y_softplus, c='red', label='softplus')
    37 plt.ylim((-0.2, 6))
    38 plt.legend(loc='best')
    39 
    40 plt.show()
  • 相关阅读:
    Python3——爬取淘宝评论
    python爬虫 URL分析
    python3爬取网页图片
    python_2 / python_3 区别与安装问题
    vue.$nextTick 解决了哪些问题
    Vue 路由缓存
    vue elementui form表单验证
    Hadoop Hive sql 语法详解
    sql server, mysql, oracle平时用法的区别
    Excel中值得收藏的12个函数公式
  • 原文地址:https://www.cnblogs.com/dhName/p/11742877.html
Copyright © 2011-2022 走看看