zoukankan      html  css  js  c++  java
  • Ubuntu 20.04 LTS, CUDA 11.2.0, NVIDIA 455 and libcudnn 8.0.4

    https://askubuntu.com/questions/1077061/how-do-i-install-nvidia-and-cuda-drivers-into-ubuntu

    这个方法可以解决很多人在装Pytorch之前解决CUDA依赖的问题,网上很多文章都没有下面这句英语,这是问题关键。

    这个问题的核心在下面这句英语:

    I don't recommend installing the NVIDIA drivers that come with CUDA as they do not contain the dkms drivers that carry over into new kernel upgrades.

    If you don't have the `graphics-drivers` PPA already setup, add it now to your system and remove any previous NVIDIA drivers.

    The Ubuntu repositories now contain the same drivers as the graphics-drivers PPA. So feel free to install the 460.39 drivers.

    sudo apt install nvidia-driver-460
    

    Now, download the CUDA 11.2.0 .run file from NVIDIA:

    wget https://developer.download.nvidia.com/compute/cuda/11.2.0/local_installers/cuda_11.2.0_460.27.04_linux.run
    

    I like to make it executable:

    chmod +x cuda_11.2.0_460.27.04_linux.run
    

    Now install CUDA:

    sudo ./cuda_11.2.0_460.27.04_linux.run 
    

    Accept the EULA:

    ┌──────────────────────────────────────────────────────────────────────────────┐
    │  End User License Agreement                                                  │
    │  --------------------------                                                  │
    │                                                                              │
    │  NVIDIA Software License Agreement and CUDA Supplement to                    │
    │  Software License Agreement.                                                 │
    │                                                                              │
    │                                                                              │
    │  Preface                                                                     │
    │  -------                                                                     │
    │                                                                              │
    │  The Software License Agreement in Chapter 1 and the Supplement              │
    │  in Chapter 2 contain license terms and conditions that govern               │
    │  the use of NVIDIA software. By accepting this agreement, you                │
    │  agree to comply with all the terms and conditions applicable                │
    │  to the product(s) included herein.                                          │
    │                                                                              │
    │                                                                              │
    │  NVIDIA Driver                                                               │
    │                                                                              │
    │                                                                              │
    │──────────────────────────────────────────────────────────────────────────────│
    │ Do you accept the above EULA? (accept/decline/quit):                         │
    │ accept                                                                            
    

    Unselect the driver by pressing the spacebar while [X] Driver is highlighted:

    ┌──────────────────────────────────────────────────────────────────────────────┐
    │ CUDA Installer                                                               │
    │ - [ ] Driver                                                                 │
    │      [ ] 460.27.04                                                           │
    │ + [X] CUDA Toolkit 11.2                                                      │
    │   [X] CUDA Samples 11.2                                                      │
    │   [X] CUDA Demo Suite 11.2                                                   │
    │   [X] CUDA Documentation 11.2                                             │
    │   Options                                                                    │
    │   Install                                                                    │
    │                                                                              │
    │                                                                              │
    │                                                                              │
    │                                                                              │
    │                                                                              │
    │                                                                              │
    │                                                                              │
    │                                                                              │
    │                                                                              │
    │                                                                              │
    │                                                                              │
    │                                                                              │
    │                                                                              │
    │ Up/Down: Move | Left/Right: Expand | 'Enter': Select | 'A': Advanced options │
    

    Then press the down arrow to Install. Press Enter then wait for installation to complete.

    After the installation is complete add the following to the bottom of your ~/.profile or add it to the /etc/profile.d/cuda.sh file which you might have to create for all users (global):

    # set PATH for cuda 11.2 installation
    if [ -d "/usr/local/cuda-11.2/bin/" ]; then
        export PATH=/usr/local/cuda-11.2/bin${PATH:+:${PATH}}
        export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
    fi
    

    Install libcudnn8

    Add the Repo:

    NOTEThe 20.04 repo from NVIDIA does not supply libcudnn but the 18.04 repo does and installs just fine into 20.04.

    echo "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda_learn.list
    

    Install the key:

    sudo apt-key adv --fetch-keys  http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
    

    Update the system:

    sudo apt update
    

    Install libcudnn 8.0.4:

    sudo apt install libcudnn8
    

    I recommend now to reboot the system for the changes to take effect.

    After it reboots check the installations:

       $ nvidia-smi
    Sat Apr 10 15:13:48 2021       
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 460.39       Driver Version: 460.39       CUDA Version: 11.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  GeForce GTX 750 Ti  On   | 00000000:01:00.0  On |                  N/A |
    | 42%   50C    P0     2W /  38W |    153MiB /  2000MiB |      0%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
                                                                                   
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |    0   N/A  N/A      4976      G   /usr/lib/xorg/Xorg                129MiB |
    |    0   N/A  N/A      5393      G   compton                             1MiB |
    |    0   N/A  N/A    672363      G   ...AAAAAAAAA= --shared-files       17MiB |
    +-----------------------------------------------------------------------------+
                                                                            
    
    
    ~$ nvcc -V
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2020 NVIDIA Corporation
    Built on Mon_Nov_30_19:08:53_PST_2020
    Cuda compilation tools, release 11.2, V11.2.67
    Build cuda_11.2.r11.2/compiler.29373293
    
    
    ~$ /sbin/ldconfig -N -v $(sed 's/:/ /' <<< $LD_LIBRARY_PATH) 2>/dev/null | grep libcudnn
        libcudnn_cnn_infer.so.8 -> libcudnn_cnn_infer.so.8.0.4
        libcudnn.so.8 -> libcudnn.so.8.0.4
        libcudnn_adv_train.so.8 -> libcudnn_adv_train.so.8.0.4
        libcudnn_ops_infer.so.8 -> libcudnn_ops_infer.so.8.0.4
        libcudnn_cnn_train.so.8 -> libcudnn_cnn_train.so.8.0.4
        libcudnn_adv_infer.so.8 -> libcudnn_adv_infer.so.8.0.4
        libcudnn_ops_train.so.8 -> libcudnn_ops_train.so.8.0.4
    
     
  • 相关阅读:
    Effective Java 第三版——72. 赞成使用标准异常
    Effective Java 第三版——71. 避免不必要地使用检查异常
    Effective Java 第三版——70. 对可恢复条件使用检查异常,对编程错误使用运行时异常
    Effective Java 第三版——69. 仅在发生异常的条件下使用异常
    Effective Java 第三版——68. 遵守普遍接受的命名约定
    Effective Java 第三版——67. 明智谨慎地进行优化
    Effective Java 第三版——66. 明智谨慎地使用本地方法
    Effective Java 第三版——65. 接口优于反射
    Effective Java 第三版——64. 通过对象的接口引用对象
    Effective Java 第三版——63. 注意字符串连接的性能
  • 原文地址:https://www.cnblogs.com/dhcn/p/15170282.html
Copyright © 2011-2022 走看看