https://zhuanlan.zhihu.com/p/425224434
时间序列
- 参考网址 (资源整合网址)
https://zhuanlan.zhihu.com/p/396504683
https://zhuanlan.zhihu.com/p/385094015
https://analyticsindiamag.com/top-10-python-tools-for-time-series-analysis/
https://machinelearningmastery.com/time-series-forecasting-methods-in-python-cheat-sheet/
https://github.com/MaxBenChrist/awesome_time_series_in_python
包列表
package name | 标签 | bref introduction |
---|---|---|
Arrow | 时间格式修改 | 方便修改时间表示形式 |
Featuretools | 自动特征工程 | 固定特征模板,不一定有业务意义 |
TSFRESH | 自动特征工程 | 自动抽取时间序列特征 |
PyFlux | 模型,传统模型 | 传统的时间序列模型 |
TimeSynth | 模拟数据 | 用于模拟时间序列的生成 |
Sktime | 模型,机器学习 | 类sklearn调佣方式的时间序列处理器,模型偏机器学习 |
Darts | 模型,传统模型 | 传统模型到深度学习模型都有, |
Orbit | 模型,贝叶斯 | 贝叶斯模型 ,Uber出品 |
AutoTS | 模型,深度学习,AutoML | 自动化 测试多种模型 并给出预测结果,包括深度学习 |
Prophet | 模型,季节性特征 | facebook的开源时间序列处理,适合有季节性 的数据 |
AtsPy | 模型,深度学习,传统模型 | 自动化实现多个模型,传统及深度学习 |
kats | 模型 | 传统模型及facebook自己的模型,深度学习暂时少 |
gluon-ts | 模型,深度学习 | 亚马逊 的包,基于MXNET ,深度学习模型多 |
AutoGluon | 模型,AutoML,深度学习 | 亚马逊的包,基于MXNET,AutoML,文本、图像、表格数据都可以。 |
GENDIS | 模型,shaplet | shaplet构建距离特征,进行分类 |
Flow Forecast | 模型,深度学习 | 深度学习为主,pytorch框架,都是常见STOA模型 |
pandas-ta | quant,特征工程 | 技术指标 计算,基于ta-lib搭建 |
PyTorch_Forecasting | 模型,深度学习 | 将时间序列的STOA模型基于pytorch实现 |
statsmodels | 模型,传统模型 | 基于scipy,传统的时间序列模型,模型很全 |
stumpy | 特征工程 | 用于构造时间序列的特征,能够为某一个特定的时间序列构造特征向量。 |
TA-Lib | quant,特征工程 | 技术指标 计算 |
ta | quant,特征工程 | 技术指标 计算 |
tslearn | 模型,传统模型 | 传统的模型,类似sklearn的处理方法。 |
tsmoothie | 数据预处理,模型 | 用于对时间序列进行平滑,去除异常点。 |
tsmoothie
Description
用于对时间序列进行平滑,去除异常点。
A python library for time-series smoothing and outlier detection in a vectorized way.
数据预处理目的:
- Time Series Smoothing for better Clustering
- Time Series Smoothing for better Forecasting
- Real-Time Time Series Anomaly Detection
- Extreme Event Time Series Preprocessing
- Time Series Bootstrap in the age of Deep Learning
installation
pip install --upgrade tsmoothie
document
https://github.com/cerlymarco/tsmoothie
tslearn
Description
传统的模型,类似sklearn的处理方法。
功能包括:
|data|processing|clustering|classification|regression|metrics| |---|---|---|---|---|---| |UCR Datasets|Scaling|TimeSeriesKMeans|KNN Classifier|KNN Regressor|Dynamic Time Warping| |Generators|Piecewise|KShape|TimeSeriesSVC|TimeSeriesSVR|Global Alignment Kernel| |Conversion(1, 2)| |KernelKmeans|LearningShapelets|MLP|Barycenters| | | | |Early Classification| |Matrix Profile|
installation
There are different alternatives to install tslearn:
- PyPi:
python -m pip install tslearn<br />
- Conda:
conda install -c conda-forge tslearn<br />
- Git:
python -m pip install https://github.com/tslearn-team/tslearn/archive/main.zip
document
https://github.com/tslearn-team/tslearn
ta
Description
用于技术指标的计算。
- 可以计算的技术指标
Volume
- Money Flow Index (MFI)
- Accumulation/Distribution Index (ADI)
- On-Balance Volume (OBV)
- Chaikin Money Flow (CMF)
- Force Index (FI)
- Ease of Movement (EoM, EMV)
- Volume-price Trend (VPT)
- Negative Volume Index (NVI)
- Volume Weighted Average Price (VWAP)
Volatility
- Average True Range (ATR)
- Bollinger Bands (BB)
- Keltner Channel (KC)
- Donchian Channel (DC)
- Ulcer Index (UI)
Trend
- Simple Moving Average (SMA)
- Exponential Moving Average (EMA)
- Weighted Moving Average (WMA)
- Moving Average Convergence Divergence (MACD)
- Average Directional Movement Index (ADX)
- Vortex Indicator (VI)
- Trix (TRIX)
- Mass Index (MI)
- Commodity Channel Index (CCI)
- Detrended Price Oscillator (DPO)
- KST Oscillator (KST)
- Ichimoku Kinkō Hyō (Ichimoku)
- Parabolic Stop And Reverse (Parabolic SAR)
- Schaff Trend Cycle (STC)
Momentum
- Relative Strength Index (RSI)
- Stochastic RSI (SRSI)
- True strength index (TSI)
- Ultimate Oscillator (UO)
- Stochastic Oscillator (SR)
- Williams %R (WR)
- Awesome Oscillator (AO)
- Kaufman's Adaptive Moving Average (KAMA)
- Rate of Change (ROC)
- Percentage Price Oscillator (PPO)
- Percentage Volume Oscillator (PVO)
Others
- Daily Return (DR)
- Daily Log Return (DLR)
- Cumulative Return (CR)
installation
pip install --upgrade ta
document
https://github.com/bukosabino/ta
https://technical-analysis-library-in-python.readthedocs.io/en/latest/
TA-Lib
Description
用于计算金融时间序列的各项指标。
from talib import abstract
# directly
SMA = abstract.SMA
# or by name
SMA = abstract.Function('sma')
installation
安装问题参考:
https://github.com/mrjbq7/ta-lib
You can install from PyPI:
$ pip install TA-Lib
Or checkout the sources and run `setup.py` yourself:
$ python [setup.py](http://setup.py) install
It also appears possible to install via [Conda Forge](https://anaconda.org/conda-forge/ta-lib):
$ conda install -c conda-forge ta-lib
document
https://github.com/mrjbq7/ta-lib
stumpy
Description
用于构造时间序列的特征,能够为某一个特定的时间序列构造特征向量。
特征向量含义:https://stumpy.readthedocs.io/en/latest/Tutorial_The_Matrix_Profile.html
installation
python -m pip install stumpy
conda install -c conda-forge stumpy
document
https://github.com/TDAmeritrade/stumpy
https://stumpy.readthedocs.io/en/latest/Tutorial_The_Matrix_Profile.html
statsmodels
Description
基于scipy,传统的时间序列模型,模型很全
Contains a submodule for classical time series models and hypothesis tests
installation
https://www.statsmodels.org/dev/install.html
pip install statsmodels
conda install -c conda-forge statsmodels
document
https://www.statsmodels.org/devel/
https://github.com/statsmodels/statsmodels#documentation
PyTorch_Forecasting
Description
将时间序列的STOA模型基于pytorch实现
PyTorch Forecasting is a PyTorch-based package for forecasting time series with state-of-the-art network architectures. It provides a high-level API for training networks on pandas data frames and leverages PyTorch Lightning for scalable training on (multiple) GPUs, CPUs and for automatic logging.
适用模型:
https://github.com/jdb78/pytorch-forecasting#available-models
|Name|Covariates|Multiple targets|Regression|Classification|Probabilistic|Uncertainty|Interactions between series|Flexible history length|Cold-start|Required computational resources (1-5, 5=most)| |---|---|---|---|---|---|---|---|---|---|---| |RecurrentNetwork|x|x|x| | | | |x| |2| |DecoderMLP|x|x|x|x| |x| |x|x|1| |NBeats| | |x| | | | | | |1| |DeepAR|x|x|x| |x|x| |x| |3| |TemporalFusionTransformer|x|x|x|x| |x| |x|x|4|
installation
pip install pytorch-forecasting
# 或者
conda install pytorch-forecasting pytorch -c pytorch>=1.7 -c conda-forge
document
https://github.com/jdb78/pytorch-forecasting
https://pytorch-forecasting.readthedocs.io/en/latest/
pandas-ta
Description
基于TA Lib 的封装,金融时间序列的技术指标,比如macd等。
An easy to use Python 3 Pandas Extension with 130+ Technical Analysis Indicators
installation
pip install pandas_ta
或者最新版
pip install -U git+https://github.com/twopirllc/pandas-ta
document
https://github.com/twopirllc/pandas-ta
指标说明:
https://github.com/twopirllc/pandas-ta#indicators-by-category
Flow Forecast
Description
基本都是深度学习模型,基于pytorch
Flow Forecast is a deep learning for time series forecasting , classification , and anomaly detection framework built in PyTorch
Models currently supported
- Vanilla LSTM : A basic LSTM that is suitable for multivariate time series forecasting and transfer learning.
- Full transformer : The full original transformer with all 8 encoder and decoder blocks. Requires passing the target in at inference.
- Simple Multi-Head Attention : A simple multi-head attention block and linear embedding layers. Suitable for transfer learning.
- Transformer with a linear decoder: A transformer with n-encoder blocks (this is tunable) and a linear decoder.
- DA-RNN: A well rounded model with which utilizes a LSTM + attention.
- Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting:
- Transformer XL:
- Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
- DeepAR
installation
pip install flood-forecast
document
https://github.com/AIStream-Peelout/flow-forecast
https://flow-forecast.atlassian.net/wiki/spaces/FF/overview
https://flow-forecast.atlassian.net/wiki/spaces/FF/pages/364019713/Training+Models
AutoGluon
Description
AutoML的包,用于自动化的学习,包括文本、图像、表格数据;
示例
from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=120) # Fit models for 120s
leaderboard = predictor.leaderboard(test_data)
installation
# First install package from terminal:
python3 -m pip install -U pip
python3 -m pip install -U setuptools wheel
python3 -m pip install -U "mxnet<2.0.0"
python3 -m pip install autogluon # autogluon==0.3.1
document
https://github.com/awslabs/autogluon
https://auto.gluon.ai/stable/tutorials/tabular_prediction/tabular-quickstart.html
GENDIS
Description
能够自动识别出shaplet(时间序列的子序列),并将与各个序列的距离作为特征,根据特征进行序列的分类处理。
installation
https://github.com/IBCNServices/GENDIS#installation
document
https://github.com/IBCNServices/GENDIS
gluon-ts
Description
有较多深度学习模型 的模块,亚马逊的包,基于MXNET。
模型参考:https://github.com/awslabs/gluon-ts/tree/master/src/gluonts/model
installation
pip install --upgrade mxnet~=1.7 gluonts
document
https://github.com/awslabs/gluon-ts
https://github.com/awslabs/gluon-ts/tree/master/src/gluonts
kats
Description
facebook轻量级,可以工业使用的框架,支持模型SARIMA,Prophet,Holt-Winters
支持模型:https://github.com/facebookresearch/Kats/tree/main/kats/models
Kats is a toolkit to analyze time series data, a lightweight , easy-to-use, and generalizable framework to perform time series analysis. Time series analysis is an essential component of Data Science and Engineering work at industry, from understanding the key statistics and characteristics, detecting regressions and anomalies, to forecasting future trends. Kats aims to provide the one-stop shop for time series analysis , including detection, forecasting, feature extraction/embedding , multivariate analysis, etc.
Important links
- Homepage: https://facebookresearch.github.io/Kats/
- Kats Python package: https://pypi.org/project/kats/0.1.0/
- Facebook Engineering Blog Post: https://engineering.fb.com/2021/06/21/open-source/kats/
- Source code repository: https://github.com/facebookresearch/kats
- Contributing: https://github.com/facebookresearch/Kats/blob/master/CONTRIBUTING.md
- Tutorials: https://github.com/facebookresearch/Kats/tree/master/tutorials
installation
pip install --upgrade pip
pip install kats
If you need only a small subset of Kats, you can install a minimal version of Kats with
MINIMAL_KATS=1 pip install kats
document
AtsPy
Description
自动化实现多个模型。
Easily develop state of the art time series models to forecast univariate data series. Simply load your data and select which models you want to test. This is the largest repository of automated structural and machine learning time series models . Please get in contact if you want to contribute a model. This is a fledgling project, all advice appreciated.
Automated Models
ARIMA
- Automated ARIMA ModellingProphet
- Modeling Multiple Seasonality With Linear or Non-linear GrowthHWAAS
- Exponential Smoothing With Additive Trend and Additive SeasonalityHWAMS
- Exponential Smoothing with Additive Trend and Multiplicative SeasonalityNBEATS
- Neural basis expansion analysis (now fixed at 20 Epochs)Gluonts
- RNN-based Model (now fixed at 20 Epochs)TATS
- Seasonal and Trend no Box CoxTBAT
- Trend and Box CoxTBATS1
- Trend, Seasonal (one), and Box CoxTBATP1
- TBATS1 but Seasonal Inference is Hardcoded by PeriodicityTBATS2
- TBATS1 With Two Seasonal Periods
installation
pip install atspy
document
https://github.com/firmai/atspy
Prophet
Description
facebook的开源时间序列处理,适用于有季节性 的数据。
It works best with time series that have strong seasonal effects and several seasons of historical data. (github文档说明)
Prophet是Facebook研究团队开发的知名时间序列软件包,于2017年首次发布,适用于具有强烈季节性影响 的数据和多个季节 的历史数据。它具有高度的用户友好性和可定制性,只需进行最少的设置。
# Loading the library
import pandas as pd
import matplotlib.pyplot as plt
from fbprophet import Prophet
# Loading the data from the repo:
df = pd.read_csv("https://raw.githubusercontent.com/facebook/prophet/master/examples/example_wp_log_peyton_manning.csv")
# Fitting the model
model = Prophet()
model.fit(df) #fit the model.
# Predict
future = model.make_future_dataframe(periods=730) # predicting for ~ 2 years
forecast = model.predict(future) # Predict future
# Plot results
fig1 = model.plot(forecast) # Plot the fit to past data and future forcast.
fig2 = model.plot_components(forecast) # Plot breakdown of components.
plt.show()
forecast # Displaying various results in table format.
installation
pip install prophet
document
https://github.com/facebook/prophet
https://machinelearningmastery.com/time-series-forecasting-with-prophet-in-python/
https://facebook.github.io/prophet/
https://pypi.org/project/prophet/
AutoT S
Description
AutoTS 是一个自动化的时间序列预测库,可以使用简单的代码训练多个时间序列模型,此库的一些最佳功能包括:
- 利用遗传规划 优化方法寻找最优时间序列预测模型。
- 提供置信区间 预测值的下限和上限。
- 它训练各种各样的模型 ,如统计的,机器学习以及深度学习模型
- 它还可以执行最佳模型的自动集成
- 它还可以通过学习最优NaN插补和异常值去除 来处理混乱的数据
- 它可以运行单变量和多变量 时间序列
# also: _hourly, _daily, _weekly, or _yearly
from autots.datasets import load_monthly
df_long = load_monthly(long=True)
from autots import AutoTS
model = AutoTS(
forecast_length=3,
frequency='infer',
ensemble='simple',
max_generations=5,
num_validations=2,
)
model = model.fit(df_long, date_col='datetime', value_col='value', id_col='series_id')
# Print the name of the best model
print(model)
installation
pip install autots
document
https://winedarksea.github.io/AutoTS/build/html/source/tutorial.html
https://github.com/winedarksea/AutoTS
Orbit
Description
Uber开发的时间序列预测包,使用贝叶斯方法,比较特别
目前支持模型
Currently, it supports concrete implementations for the following models : - Exponential Smoothing (ETS) - Local Global Trend (LGT) - Damped Local Trend (DLT) - Kernel Time-based Regression (KTR)
支持优化方法
It also supports the following sampling/optimization methods for model estimation/inferences:
Markov-Chain Monte Carlo (MCMC) as a full sampling method Maximum a Posteriori (MAP) as a point estimate method Variational Inference (VI) as a hybrid-sampling method on approximate distribution
installation
pip install orbit-ml
document
For details, check out our documentation and tutorials:
- HTML (stable): https://orbit-ml.readthedocs.io/en/stable/
- HTML (latest): https://orbit-ml.readthedocs.io/en/latest/
Darts
Description
传统模型到深度学习模型都有。支持多元时间序列。
支持的模型类型:
|Model|Univariate|Multivariate|Probabilistic|Multiple-series training|Past-observed covariates support|Future-known covariates support|Reference| |---|---|---|---|---|---|---|---| |ARIMA
|x| |x| | | | | |VARIMA
|x|x| | | | | | |AutoARIMA
|x| | | | | | | |ExponentialSmoothing
|x| |x| | | | | |Theta
and FourTheta
|x| | | | | |Theta & 4 Theta| |Prophet
|x| |x| | |x|Prophet repo| |FFT
(Fast Fourier Transform)|x| | | | | | | |RegressionModel
(incl RandomForest
, LinearRegressionModel
and LightGBMModel
)|x|x| |x|x|x| | |RNNModel
(incl. LSTM and GRU); equivalent to DeepAR in its probabilistic version|x|x|x|x| |x|DeepAR paper| |BlockRNNModel
(incl. LSTM and GRU)|x|x| |x|x| | | |NBEATSModel
|x|x| |x|x| |N-BEATS paper| |TCNModel
|x|x|x|x|x| |TCN paper, DeepTCN paper, blog post| |TransformerModel
|x|x| |x|x| | | |Naive Baselines|x| | | | | | |
项目features
Forecasting Models: A large collection of forecasting models; from statistical models (such as ARIMA) to deep learning models (such as N-BEATS). See table of models below.
Data processing: Tools to easily apply (and revert) common transformations on time series data (scaling, boxcox, …)
Metrics: A variety of metrics for evaluating time series' goodness of fit; from R2-scores to Mean Absolute Scaled Error.
Backtesting: Utilities for simulating historical forecasts, using moving time windows.
Regression Models: Possibility to predict a time series from lagged versions of itself and of some external covariate series, using arbitrary regression models (e.g. scikit-learn models).
Multiple series training: All neural networks, as well as RegressionModel
s (incl. LinearRegressionModel
and RandomForest
) support being trained on multiple series.
Past and Future Covariates support: Some models support past-observed and/or future-known covariate time series as inputs for producing forecasts.
Multivariate Support: Tools to create, manipulate and forecast multivariate time series.
Probabilistic Support: TimeSeries
objects can (optionally) represent stochastic time series; this can for instance be used to get confidence intervals.
Filtering Models: Darts offers three filtering models: KalmanFilter
, GaussianProcessFilter
, and MovingAverage
, which allow to filter time series, and in some cases obtain probabilistic inferences of the underlying states/values.
installation
pip install darts
document
https://analyticsindiamag.com/hands-on-guide-to-darts-a-python-tool-for-time-series-forecasting/
https://github.com/unit8co/darts
Sktime
Description
类sklearn的时间序列处理包
About: Sktime is a unified python framework that provides API for machine learning with time series data. The framework also provides scikit-learn compatible tools to build, tune and validate time series models for multiple learning problems, including time series classification, time series regression and forecasting.
from sktime.datasets import load_airline
from sktime.forecasting.base import ForecastingHorizon
from sktime.forecasting.model_selection import temporal_train_test_split
from sktime.forecasting.theta import ThetaForecaster
from sktime.performance_metrics.forecasting import mean_absolute_percentage_error
y = load_airline()
y_train, y_test = temporal_train_test_split(y)
fh = ForecastingHorizon(y_test.index, is_relative=False)
forecaster = ThetaForecaster(sp=12) # monthly seasonal periodicity
forecaster.fit(y_train)
y_pred = forecaster.predict(fh)
mean_absolute_percentage_error(y_test, y_pred)
>>> 0.08661467738190656
installation
pip
pip install sktime
安装额外依赖
pip install sktime[all_extras]
conda安装
conda install -c conda-forge sktime
安装依赖
conda install -c conda-forge sktime-all-extras
document
https://www.sktime.org/en/latest/api_reference.html
https://github.com/alan-turing-institute/sktime
TimeSynth
Description
可以用于生成时间序列的模拟数据
Signal Types
- Harmonic functions(sin, cos or custom functions )
- Gaussian processes with different kernels
- Constant
- Squared exponential
- Exponential
- Rational quadratic
- Linear
- Matern
- Periodic
- Pseudoperiodic signals
- Autoregressive(p) process
- Continuous autoregressive process (CAR)
- Nonlinear Autoregressive Moving Average model (NARMA)
installation
git clone https://github.com/TimeSynth/TimeSynth.git
cd TimeSynth
python setup.py install
document
https://github.com/TimeSynth/TimeSynth
PyFlux
Description
提供传统的时间序列方法
About: PyFlux is an open source library for time series analysis and prediction. In this library, users can choose from a flexible range of modelling and inference options , and use the output for forecasting and retrospection. The library allows for a probabilistic approach to time series modelling. The latest release version of PyFlux is available on PyPi. Python 2.7 and Python 3.5 are supported, but development occurs primarily on 3.5.
- ARIMA models
- ARIMAX models
- Dynamic Autoregression models
- Dynamic Paired Comparison models
- GARCH models
- Beta-t-EGARCH models
- EGARCH-in-mean models
- EGARCH-in-mean regression models
- Long Memory EGARCH models
- Skew-t-EGARCH models
- Skew-t-EGARCH-in-mean models
- GAS models
- GASX models
- GAS State Space models
- Gaussian State Space models
- Non-Gaussian State Space models
- VAR models
installation
pip install pyflux
document
https://github.com/RJT1990/pyflux
TSFRESH
Description
About: TSFRESH or Time Series Feature extraction based on scalable hypothesis tests is a Python package with various feature extraction methods and a robust feature selection algorithm. The package automatically calculates a large number of time series characteristics and contains methods to evaluate the explaining power and importance of such characteristics for regression or classification tasks. Advantages include: It is compatible with sklearn, pandas and numpy It allows anyone to easily add their favorite features * It both runs on the local machine or even on a cluster
installation
pip install tsfresh
docker pull nbraun/tsfresh
document
https://github.com/blue-yonder/tsfresh
Featuretools
Description
时间序列相关的自动化特征工程。
About: Featuretools is an open source Python library for automated feature engineering. The framework excels at transforming temporal and relational datasets into feature matrices for machine learning. Featuretools references generated features through the feature name. In order to make features easier to understand, Featuretools offers two additional tools, featuretools.graph_feature() and featuretools.describe_feature(), to help explain what a feature is and the steps Featuretools took to generate it.
installation
pip install featuretools
https://featuretools.alteryx.com/en/stable/install.html
document
https://featuretools.alteryx.com/en/stable/getting_started/getting_started_index.html
https://github.com/alteryx/featuretools
Arrow
Description
Arrow is a Python library that offers a sensible and human-friendly approach to creating, manipulating, formatting and converting dates, times and timestamps
用于时间的格式转换,可以转换为便于人阅读的格式。
installation
pip install -U arrow
document
https://github.com/arrow-py/arrow
>>> utc = utc.shift(hours=-1)
>>> utc
<Arrow [2013-05-11T20:23:58.970460+00:00]>
>>> local = utc.to('US/Pacific')
>>> local
<Arrow [2013-05-11T13:23:58.970460-07:00]>
>>> local.timestamp()
1368303838.970460
>>> local.format()
'2013-05-11 13:23:58 -07:00'
>>> local.format('YYYY-MM-DD HH:mm:ss ZZ')
'2013-05-11 13:23:58 -07:00'
>>> local.humanize()
'an hour ago'
>>> local.humanize(locale='ko-kr')
'한시간 전'
ithub: https://github.com/winedarksea/AutoTS
pip install --upgrade pip pip install kats