zoukankan      html  css  js  c++  java
  • 时间序列相关的python 包

    https://zhuanlan.zhihu.com/p/425224434

    时间序列

    • 参考网址 (资源整合网址)

    zhuanlan.zhihu.com/p/39

    zhuanlan.zhihu.com/p/38

    analyticsindiamag.com/t

    machinelearningmastery.com

    github.com/MaxBenChrist

    包列表

    package name 标签 bref introduction
    Arrow 时间格式修改 方便修改时间表示形式
    Featuretools 自动特征工程 固定特征模板,不一定有业务意义
    TSFRESH 自动特征工程 自动抽取时间序列特征
    PyFlux 模型,传统模型 传统的时间序列模型
    TimeSynth 模拟数据 用于模拟时间序列的生成
    Sktime 模型,机器学习 类sklearn调佣方式的时间序列处理器,模型偏机器学习
    Darts 模型,传统模型 传统模型到深度学习模型都有,
    Orbit 模型,贝叶斯 贝叶斯模型 ,Uber出品
    AutoTS 模型,深度学习,AutoML 自动化 测试多种模型 并给出预测结果,包括深度学习
    Prophet 模型,季节性特征 facebook的开源时间序列处理,适合有季节性 的数据
    AtsPy 模型,深度学习,传统模型 自动化实现多个模型,传统及深度学习
    kats 模型 传统模型及facebook自己的模型,深度学习暂时少
    gluon-ts 模型,深度学习 亚马逊 的包,基于MXNET ,深度学习模型多
    AutoGluon 模型,AutoML,深度学习 亚马逊的包,基于MXNET,AutoML,文本、图像、表格数据都可以。
    GENDIS 模型,shaplet shaplet构建距离特征,进行分类
    Flow Forecast 模型,深度学习 深度学习为主,pytorch框架,都是常见STOA模型
    pandas-ta quant,特征工程 技术指标 计算,基于ta-lib搭建
    PyTorch_Forecasting 模型,深度学习 将时间序列的STOA模型基于pytorch实现
    statsmodels 模型,传统模型 基于scipy,传统的时间序列模型,模型很全
    stumpy 特征工程 用于构造时间序列的特征,能够为某一个特定的时间序列构造特征向量。
    TA-Lib quant,特征工程 技术指标 计算
    ta quant,特征工程 技术指标 计算
    tslearn 模型,传统模型 传统的模型,类似sklearn的处理方法。
    tsmoothie 数据预处理,模型 用于对时间序列进行平滑,去除异常点。

     

    tsmoothie

    Description

    用于对时间序列进行平滑,去除异常点。

    A python library for time-series smoothing and outlier detection in a vectorized way.

    数据预处理目的:

    installation

    pip install --upgrade tsmoothie

    document

    github.com/cerlymarco/t

    tslearn

    Description

    传统的模型,类似sklearn的处理方法。

    功能包括:

    |data|processing|clustering|classification|regression|metrics| |---|---|---|---|---|---| |UCR Datasets|Scaling|TimeSeriesKMeans|KNN Classifier|KNN Regressor|Dynamic Time Warping| |Generators|Piecewise|KShape|TimeSeriesSVC|TimeSeriesSVR|Global Alignment Kernel| |Conversion(12)| |KernelKmeans|LearningShapelets|MLP|Barycenters| | | | |Early Classification| |Matrix Profile|

    installation

    There are different alternatives to install tslearn:

    • PyPi: python -m pip install tslearn<br />
    • Conda: conda install -c conda-forge tslearn<br />
    • Git: python -m pip install https://github.com/tslearn-team/tslearn/archive/main.zip

    document

    github.com/tslearn-team

    ta

    Description

    用于技术指标的计算。

    • 可以计算的技术指标

    Volume

    • Money Flow Index (MFI)
    • Accumulation/Distribution Index (ADI)
    • On-Balance Volume (OBV)
    • Chaikin Money Flow (CMF)
    • Force Index (FI)
    • Ease of Movement (EoM, EMV)
    • Volume-price Trend (VPT)
    • Negative Volume Index (NVI)
    • Volume Weighted Average Price (VWAP)

    Volatility

    • Average True Range (ATR)
    • Bollinger Bands (BB)
    • Keltner Channel (KC)
    • Donchian Channel (DC)
    • Ulcer Index (UI)

    Trend

    • Simple Moving Average (SMA)
    • Exponential Moving Average (EMA)
    • Weighted Moving Average (WMA)
    • Moving Average Convergence Divergence (MACD)
    • Average Directional Movement Index (ADX)
    • Vortex Indicator (VI)
    • Trix (TRIX)
    • Mass Index (MI)
    • Commodity Channel Index (CCI)
    • Detrended Price Oscillator (DPO)
    • KST Oscillator (KST)
    • Ichimoku Kinkō Hyō (Ichimoku)
    • Parabolic Stop And Reverse (Parabolic SAR)
    • Schaff Trend Cycle (STC)

    Momentum

    • Relative Strength Index (RSI)
    • Stochastic RSI (SRSI)
    • True strength index (TSI)
    • Ultimate Oscillator (UO)
    • Stochastic Oscillator (SR)
    • Williams %R (WR)
    • Awesome Oscillator (AO)
    • Kaufman's Adaptive Moving Average (KAMA)
    • Rate of Change (ROC)
    • Percentage Price Oscillator (PPO)
    • Percentage Volume Oscillator (PVO)

    Others

    • Daily Return (DR)
    • Daily Log Return (DLR)
    • Cumulative Return (CR)

    installation

    pip install --upgrade ta

    document

    github.com/bukosabino/t

    technical-analysis-library-in-python.readthedocs.io

    TA-Lib

    Description

    用于计算金融时间序列的各项指标。

    from talib import abstract
    
    # directly
    SMA = abstract.SMA
    
    # or by name
    SMA = abstract.Function('sma')

    installation

    安装问题参考:

    github.com/mrjbq7/ta-li

    You can install from PyPI:
    
    $ pip install TA-Lib
    Or checkout the sources and run `setup.py` yourself:
    
    $ python [setup.py](http://setup.py) install
    
    
    It also appears possible to install via [Conda Forge](https://anaconda.org/conda-forge/ta-lib):
    
    $ conda install -c conda-forge ta-lib

    document

    github.com/mrjbq7/ta-li

    stumpy

    Description

    用于构造时间序列的特征,能够为某一个特定的时间序列构造特征向量。

    特征向量含义:stumpy.readthedocs.io/e

    installation

    python -m pip install stumpy
    conda install -c conda-forge stumpy

    document

    github.com/TDAmeritrade

    stumpy.readthedocs.io/e

    statsmodels

    Description

    基于scipy,传统的时间序列模型,模型很全

    Contains a submodule for classical time series models and hypothesis tests

    installation

    statsmodels.org/dev/ins

    pip install statsmodels
    conda install -c conda-forge statsmodels

    document

    statsmodels.org/devel/

    github.com/statsmodels/

    PyTorch_Forecasting

    Description

    将时间序列的STOA模型基于pytorch实现

    PyTorch Forecasting is a PyTorch-based package for forecasting time series with state-of-the-art network architectures. It provides a high-level API for training networks on pandas data frames and leverages PyTorch Lightning for scalable training on (multiple) GPUs, CPUs and for automatic logging.

    适用模型:

    github.com/jdb78/pytorc

    |Name|Covariates|Multiple targets|Regression|Classification|Probabilistic|Uncertainty|Interactions between series|Flexible history length|Cold-start|Required computational resources (1-5, 5=most)| |---|---|---|---|---|---|---|---|---|---|---| |RecurrentNetwork|x|x|x| | | | |x| |2| |DecoderMLP|x|x|x|x| |x| |x|x|1| |NBeats| | |x| | | | | | |1| |DeepAR|x|x|x| |x|x| |x| |3| |TemporalFusionTransformer|x|x|x|x| |x| |x|x|4|

    installation

    pip install pytorch-forecasting
    # 或者
    conda install pytorch-forecasting pytorch -c pytorch>=1.7 -c conda-forge

    document

    github.com/jdb78/pytorc

    pytorch-forecasting.readthedocs.io

    pandas-ta

    Description

    基于TA Lib 的封装,金融时间序列的技术指标,比如macd等。

    An easy to use Python 3 Pandas Extension with 130+ Technical Analysis Indicators

    installation

    pip install pandas_ta

    或者最新版

    pip install -U git+github.com/twopirllc/pa

    document

    github.com/twopirllc/pa

    指标说明:

    github.com/twopirllc/pa

    Flow Forecast

    Description

    基本都是深度学习模型,基于pytorch

    Flow Forecast is a deep learning for time series forecasting , classification , and anomaly detection framework built in PyTorch
    Models currently supported
    1. Vanilla LSTM : A basic LSTM that is suitable for multivariate time series forecasting and transfer learning.
    2. Full transformer : The full original transformer with all 8 encoder and decoder blocks. Requires passing the target in at inference.
    3. Simple Multi-Head Attention : A simple multi-head attention block and linear embedding layers. Suitable for transfer learning.
    4. Transformer with a linear decoder: A transformer with n-encoder blocks (this is tunable) and a linear decoder.
    5. DA-RNN: A well rounded model with which utilizes a LSTM + attention.
    6. Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting:
    7. Transformer XL:
    8. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
    9. DeepAR

    installation

    pip install flood-forecast

    document

    github.com/AIStream-Pee

    flow-forecast.atlassian.net

    flow-forecast.atlassian.net

    AutoGluon

    Description

    AutoML的包,用于自动化的学习,包括文本、图像、表格数据;

    示例

    from autogluon.tabular import TabularDataset, TabularPredictor
    train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
    test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
    predictor = TabularPredictor(label='class').fit(train_data, time_limit=120)  # Fit models for 120s
    leaderboard = predictor.leaderboard(test_data)

    installation

    # First install package from terminal:
    python3 -m pip install -U pip
    python3 -m pip install -U setuptools wheel
    python3 -m pip install -U "mxnet<2.0.0"
    python3 -m pip install autogluon  # autogluon==0.3.1

    document

    github.com/awslabs/auto

    auto.gluon.ai/stable/tu

    GENDIS

    Description

    能够自动识别出shaplet(时间序列的子序列),并将与各个序列的距离作为特征,根据特征进行序列的分类处理。

    installation

    github.com/IBCNServices

    document

    github.com/IBCNServices

    gluon-ts

    Description

    较多深度学习模型 的模块,亚马逊的包,基于MXNET。

    模型参考:github.com/awslabs/gluo

    installation

    pip install --upgrade mxnet~=1.7 gluonts

    document

    github.com/awslabs/gluo

    github.com/awslabs/gluo

    kats

    Description

    facebook轻量级,可以工业使用的框架,支持模型SARIMA,Prophet,Holt-Winters

    支持模型:github.com/facebookrese

    Kats is a toolkit to analyze time series data, a lightweight , easy-to-use, and generalizable framework to perform time series analysis. Time series analysis is an essential component of Data Science and Engineering work at industry, from understanding the key statistics and characteristics, detecting regressions and anomalies, to forecasting future trends. Kats aims to provide the one-stop shop for time series analysis , including detection, forecasting, feature extraction/embedding , multivariate analysis, etc.
    Important links

    installation

    pip install --upgrade pip
    pip install kats

    If you need only a small subset of Kats, you can install a minimal version of Kats with

    MINIMAL_KATS=1 pip install kats

    document

    AtsPy

    Description

    自动化实现多个模型。

    Easily develop state of the art time series models to forecast univariate data series. Simply load your data and select which models you want to test. This is the largest repository of automated structural and machine learning time series models . Please get in contact if you want to contribute a model. This is a fledgling project, all advice appreciated.

    Automated Models

    1. ARIMA - Automated ARIMA Modelling
    2. Prophet - Modeling Multiple Seasonality With Linear or Non-linear Growth
    3. HWAAS - Exponential Smoothing With Additive Trend and Additive Seasonality
    4. HWAMS - Exponential Smoothing with Additive Trend and Multiplicative Seasonality
    5. NBEATS - Neural basis expansion analysis (now fixed at 20 Epochs)
    6. Gluonts - RNN-based Model (now fixed at 20 Epochs)
    7. TATS - Seasonal and Trend no Box Cox
    8. TBAT - Trend and Box Cox
    9. TBATS1 - Trend, Seasonal (one), and Box Cox
    10. TBATP1 - TBATS1 but Seasonal Inference is Hardcoded by Periodicity
    11. TBATS2 - TBATS1 With Two Seasonal Periods

    installation

    pip install atspy

    document

    github.com/firmai/atspy

    Prophet

    Description

    facebook的开源时间序列处理,适用于有季节性 的数据。

    It works best with time series that have strong seasonal effects and several seasons of historical data. (github文档说明)
    Prophet是Facebook研究团队开发的知名时间序列软件包,于2017年首次发布,适用于具有强烈季节性影响 的数据和多个季节 的历史数据。它具有高度的用户友好性和可定制性,只需进行最少的设置。
    # Loading the library
    import pandas as pd
    import matplotlib.pyplot as plt
    from fbprophet import Prophet
    
    
    # Loading the data from the repo:
    df = pd.read_csv("https://raw.githubusercontent.com/facebook/prophet/master/examples/example_wp_log_peyton_manning.csv")
    
    # Fitting the model
    model = Prophet() 
    model.fit(df) #fit the  model.
    
    # Predict
    future = model.make_future_dataframe(periods=730) # predicting for ~ 2 years
    forecast = model.predict(future) # Predict future
    
    # Plot results
    fig1 = model.plot(forecast) # Plot the fit to past data and future forcast.
    fig2 = model.plot_components(forecast) # Plot breakdown of components.
    plt.show()
    forecast # Displaying various results in table format.

    installation

    pip install prophet

    document

    github.com/facebook/pro

    machinelearningmastery.com

    facebook.github.io/prop

    pypi.org/project/prophe

    AutoT S

    Description

    AutoTS 是一个自动化的时间序列预测库,可以使用简单的代码训练多个时间序列模型,此库的一些最佳功能包括:

    • 利用遗传规划 优化方法寻找最优时间序列预测模型。
    • 提供置信区间 预测值的下限和上限。
    • 训练各种各样的模型 ,如统计的,机器学习以及深度学习模型
    • 它还可以执行最佳模型的自动集成
    • 它还可以通过学习最优NaN插补和异常值去除 来处理混乱的数据
    • 它可以运行单变量和多变量 时间序列
    # also: _hourly, _daily, _weekly, or _yearly
    from autots.datasets import load_monthly
    
    df_long = load_monthly(long=True)
    
    from autots import AutoTS
    
    model = AutoTS(
        forecast_length=3,
        frequency='infer',
        ensemble='simple',
        max_generations=5,
        num_validations=2,
    )
    model = model.fit(df_long, date_col='datetime', value_col='value', id_col='series_id')
    
    # Print the name of the best model
    print(model)

    installation

    pip install autots

    document

    winedarksea.github.io/A

    github.com/winedarksea/

    Orbit

    Description

    Uber开发的时间序列预测包,使用贝叶斯方法,比较特别

    目前支持模型

    Currently, it supports concrete implementations for the following models : - Exponential Smoothing (ETS) - Local Global Trend (LGT) - Damped Local Trend (DLT) - Kernel Time-based Regression (KTR)

    支持优化方法

    It also supports the following sampling/optimization methods for model estimation/inferences:

    Markov-Chain Monte Carlo (MCMC) as a full sampling method Maximum a Posteriori (MAP) as a point estimate method Variational Inference (VI) as a hybrid-sampling method on approximate distribution

    installation

    pip install orbit-ml

    document

    For details, check out our documentation and tutorials:

    Darts

    Description

    传统模型到深度学习模型都有。支持多元时间序列。

    支持的模型类型:

    |Model|Univariate|Multivariate|Probabilistic|Multiple-series training|Past-observed covariates support|Future-known covariates support|Reference| |---|---|---|---|---|---|---|---| |ARIMA|x| |x| | | | | |VARIMA|x|x| | | | | | |AutoARIMA|x| | | | | | | |ExponentialSmoothing|x| |x| | | | | |Theta and FourTheta|x| | | | | |Theta & 4 Theta| |Prophet|x| |x| | |x|Prophet repo| |FFT (Fast Fourier Transform)|x| | | | | | | |RegressionModel (incl RandomForestLinearRegressionModel and LightGBMModel)|x|x| |x|x|x| | |RNNModel (incl. LSTM and GRU); equivalent to DeepAR in its probabilistic version|x|x|x|x| |x|DeepAR paper| |BlockRNNModel (incl. LSTM and GRU)|x|x| |x|x| | | |NBEATSModel|x|x| |x|x| |N-BEATS paper| |TCNModel|x|x|x|x|x| |TCN paperDeepTCN paperblog post| |TransformerModel|x|x| |x|x| | | |Naive Baselines|x| | | | | | |

    项目features

    Forecasting Models: A large collection of forecasting models; from statistical models (such as ARIMA) to deep learning models (such as N-BEATS). See table of models below.

    Data processing: Tools to easily apply (and revert) common transformations on time series data (scaling, boxcox, …)

    Metrics: A variety of metrics for evaluating time series' goodness of fit; from R2-scores to Mean Absolute Scaled Error.

    Backtesting: Utilities for simulating historical forecasts, using moving time windows.

    Regression Models: Possibility to predict a time series from lagged versions of itself and of some external covariate series, using arbitrary regression models (e.g. scikit-learn models).

    Multiple series training: All neural networks, as well as RegressionModels (incl. LinearRegressionModel and RandomForest) support being trained on multiple series.

    Past and Future Covariates support: Some models support past-observed and/or future-known covariate time series as inputs for producing forecasts.

    Multivariate Support: Tools to create, manipulate and forecast multivariate time series.

    Probabilistic Support: TimeSeries objects can (optionally) represent stochastic time series; this can for instance be used to get confidence intervals.

    Filtering Models: Darts offers three filtering models: KalmanFilterGaussianProcessFilter, and MovingAverage, which allow to filter time series, and in some cases obtain probabilistic inferences of the underlying states/values.

    installation

    pip install darts

    document

    analyticsindiamag.com/h

    github.com/unit8co/dart

    Sktime

    Description

    类sklearn的时间序列处理包

    About: Sktime is a unified python framework that provides API for machine learning with time series data. The framework also provides scikit-learn compatible tools to build, tune and validate time series models for multiple learning problems, including time series classification, time series regression and forecasting.
    from sktime.datasets import load_airline
    from sktime.forecasting.base import ForecastingHorizon
    from sktime.forecasting.model_selection import temporal_train_test_split
    from sktime.forecasting.theta import ThetaForecaster
    from sktime.performance_metrics.forecasting import mean_absolute_percentage_error
    
    y = load_airline()
    y_train, y_test = temporal_train_test_split(y)
    fh = ForecastingHorizon(y_test.index, is_relative=False)
    forecaster = ThetaForecaster(sp=12)  # monthly seasonal periodicity
    forecaster.fit(y_train)
    y_pred = forecaster.predict(fh)
    mean_absolute_percentage_error(y_test, y_pred)
    >>> 0.08661467738190656

    installation

    pip

    pip install sktime

    安装额外依赖

    pip install sktime[all_extras]

    conda安装

    conda install -c conda-forge sktime

    安装依赖

    conda install -c conda-forge sktime-all-extras

    document

    sktime.org/en/latest/ap

    github.com/alan-turing-

    TimeSynth

    Description

    可以用于生成时间序列的模拟数据

    Signal Types

    • Harmonic functions(sin, cos or custom functions )
    • Gaussian processes with different kernels
    • Constant
    • Squared exponential
    • Exponential
    • Rational quadratic
    • Linear
    • Matern
    • Periodic
    • Pseudoperiodic signals
    • Autoregressive(p) process
    • Continuous autoregressive process (CAR)
    • Nonlinear Autoregressive Moving Average model (NARMA)

    installation

    git clone https://github.com/TimeSynth/TimeSynth.git
    cd TimeSynth
    python setup.py install

    document

    github.com/TimeSynth/Ti

    PyFlux

    Description

    提供传统的时间序列方法

    About: PyFlux is an open source library for time series analysis and prediction. In this library, users can choose from a flexible range of modelling and inference options , and use the output for forecasting and retrospection. The library allows for a probabilistic approach to time series modelling. The latest release version of PyFlux is available on PyPi. Python 2.7 and Python 3.5 are supported, but development occurs primarily on 3.5.

    installation

    pip install pyflux

    document

    github.com/RJT1990/pyfl

    TSFRESH

    Description

    About: TSFRESH or Time Series Feature extraction based on scalable hypothesis tests is a Python package with various feature extraction methods and a robust feature selection algorithm. The package automatically calculates a large number of time series characteristics and contains methods to evaluate the explaining power and importance of such characteristics for regression or classification tasks. Advantages include: It is compatible with sklearn, pandas and numpy It allows anyone to easily add their favorite features * It both runs on the local machine or even on a cluster

    installation

    pip install tsfresh
    docker pull nbraun/tsfresh

    document

    github.com/blue-yonder/

    Featuretools

    Description

    时间序列相关的自动化特征工程。

    About: Featuretools is an open source Python library for automated feature engineering. The framework excels at transforming temporal and relational datasets into feature matrices for machine learning. Featuretools references generated features through the feature name. In order to make features easier to understand, Featuretools offers two additional tools, featuretools.graph_feature() and featuretools.describe_feature(), to help explain what a feature is and the steps Featuretools took to generate it.

    installation

    pip install featuretools

    featuretools.alteryx.com

    document

    featuretools.alteryx.com

    github.com/alteryx/feat

    Arrow

    Description

    Arrow is a Python library that offers a sensible and human-friendly approach to creating, manipulating, formatting and converting dates, times and timestamps

    用于时间的格式转换,可以转换为便于人阅读的格式。

    installation

    pip install -U arrow

    document

    github.com/arrow-py/arr

    >>> utc = utc.shift(hours=-1)
    >>> utc
    <Arrow [2013-05-11T20:23:58.970460+00:00]>
    
    >>> local = utc.to('US/Pacific')
    >>> local
    <Arrow [2013-05-11T13:23:58.970460-07:00]>
    
    >>> local.timestamp()
    1368303838.970460
    
    >>> local.format()
    '2013-05-11 13:23:58 -07:00'
    
    >>> local.format('YYYY-MM-DD HH:mm:ss ZZ')
    '2013-05-11 13:23:58 -07:00'
    
    >>> local.humanize()
    'an hour ago'
    
    >>> local.humanize(locale='ko-kr')
    '한시간 전'

    ithub: github.com/winedarksea/

    pip install --upgrade pip pip install kats

  • 相关阅读:
    js图片轮换
    PHP如何打造一个高可用高性能的网站呢?
    php中浮点数计算问题
    jQuery ajax()使用serialize()提交form数据
    js最新手机号码、电话号码正则表达式
    swoole是如何实现任务定时自动化调度的?
    Facebook的“零售吸引力”,互联网营销 狼人:
    Google勇敢新世界,互联网营销 狼人:
    Facebook的成功之道,互联网营销 狼人:
    李彦宏分享百度危机中如何“弯道超车”,互联网营销 狼人:
  • 原文地址:https://www.cnblogs.com/dhcn/p/15476133.html
Copyright © 2011-2022 走看看