zoukankan      html  css  js  c++  java
  • 无用之学matplotlib,numpy,pandas

    一、matplotlib学习

    matplotlib: 最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB,模仿MATLAB构建

    例子1:

    # coding=utf-8
    from matplotlib import pyplot as plt
    
    x = range(2,26,2)
    y = [15,13,14.5,17,20,25,26,26,27,22,18,15]
    
    #设置图片大小
    plt.figure(figsize=(20,8),dpi=80)
    
    
    
    #绘图
    plt.plot(x,y)
    
    #设置x轴的刻度
    _xtick_labels = [i/2 for i in range(4,49)]
    plt.xticks(range(25,50))
    plt.yticks(range(min(y),max(y)+1))
    
    #保存
    # plt.savefig("./t1.png")
    
    #展示图形
    plt.show()
    View Code

    图片如下

    例子2

    # coding=utf-8
    from matplotlib import pyplot as plt
    import random
    import matplotlib
    from matplotlib import font_manager
    
    #windws和linux设置字体的放
    # font = {'family' : 'MicroSoft YaHei',
    #         'weight': 'bold',
    #         'size': 'larger'}
    # matplotlib.rc("font",**font)
    # matplotlib.rc("font",family='MicroSoft YaHei',weight="bold")
    
    #另外一种设置字体的方式
    my_font = font_manager.FontProperties(fname="/System/Library/Fonts/PingFang.ttc")
    
    x = range(0,120)
    y = [random.randint(20,35) for i in range(120)]
    
    plt.figure(figsize=(20,8),dpi=80)
    
    plt.plot(x,y)
    
    #调整x轴的刻度
    _xtick_labels = ["10点{}分".format(i) for i in range(60)]
    _xtick_labels += ["11点{}分".format(i) for i in range(60)]
    #取步长,数字和字符串一一对应,数据的长度一样
    plt.xticks(list(x)[::3],_xtick_labels[::3],rotation=45,fontproperties=my_font) #rotaion旋转的度数
    
    #添加描述信息
    plt.xlabel("时间",fontproperties=my_font)
    plt.ylabel("温度 单位(℃)",fontproperties=my_font)
    plt.title("10点到12点每分钟的气温变化情况",fontproperties=my_font)
    
    plt.show()
    View Code

     例子3

    # coding=utf-8
    from matplotlib import pyplot as plt
    from matplotlib import font_manager
    
    my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\STHUPO.ttf")
    
    y = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
    x = range(11,31)
    
    #设置图形大小
    plt.figure(figsize=(20,8),dpi=80)
    
    plt.plot(x,y)
    
    #设置x轴刻度
    _xtick_labels = ["{}岁".format(i) for i in x]
    plt.xticks(x,_xtick_labels,fontproperties=my_font)
    plt.yticks(range(0,9))
    
    #绘制网格
    plt.grid(alpha=0.1)
    
    #展示
    plt.show()
    View Code

    例子4

    # coding=utf-8
    from matplotlib import pyplot as plt
    from matplotlib import font_manager
    
    my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\STHUPO.ttf")
    
    y_1 = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
    y_2 = [1,0,3,1,2,2,3,3,2,1 ,2,1,1,1,1,1,1,1,1,1]
    
    x = range(11,31)
    
    #设置图形大小
    plt.figure(figsize=(20,8),dpi=80)
    
    plt.plot(x,y_1,label="自己",color="#F08080")
    plt.plot(x,y_2,label="同桌",color="#DB7093",linestyle="--")
    
    #设置x轴刻度
    _xtick_labels = ["{}岁".format(i) for i in x]
    plt.xticks(x,_xtick_labels,fontproperties=my_font)
    # plt.yticks(range(0,9))
    
    #绘制网格
    plt.grid(alpha=0.4,linestyle=':')
    
    #添加图例
    plt.legend(prop=my_font,loc="upper left")
    
    #展示
    plt.show()
    View Code

    例子5

    # coding=utf-8
    from matplotlib import pyplot as plt
    from matplotlib import font_manager
    
    my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\STHUPO.ttf")
    y_3 = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
    y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6]
    
    x_3 = range(1,32)
    x_10 = range(51,82)
    
    #设置图形大小
    plt.figure(figsize=(20,8),dpi=80)
    
    #使用scatter方法绘制散点图,和之前绘制折线图的唯一区别
    plt.scatter(x_3,y_3,label="3月份")
    plt.scatter(x_10,y_10,label="10月份")
    
    #调整x轴的刻度
    _x = list(x_3)+list(x_10)
    _xtick_labels = ["3月{}日".format(i) for i in x_3]
    _xtick_labels += ["10月{}日".format(i-50) for i in x_10]
    plt.xticks(_x[::3],_xtick_labels[::3],fontproperties=my_font,rotation=45)
    
    #添加图例
    plt.legend(loc="upper left",prop=my_font)
    
    #添加描述信息
    plt.xlabel("时间",fontproperties=my_font)
    plt.ylabel("温度",fontproperties=my_font)
    plt.title("标题",fontproperties=my_font)
    #展示
    plt.show()
    View Code

    例子6

    # coding=utf-8
    from matplotlib import pyplot as plt
    from matplotlib import font_manager
    my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\STHUPO.ttf")
    
    
    a = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士","摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归","生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]
    
    b=[56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]
    
    
    #设置图形大小
    plt.figure(figsize=(20,15),dpi=80)
    #绘制条形图
    plt.bar(range(len(a)),b,width=0.7)
    #设置字符串到x轴
    plt.xticks(range(len(a)),a,fontproperties=my_font,rotation=90)
    
    plt.savefig("./movie.png")
    
    plt.show()
    View Code

    例子6-2

    #绘制横着的条形图
    from matplotlib import pyplot as plt
    from matplotlib import font_manager
    my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\STHUPO.ttf")
    
    
    a = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士","摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归","生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]
    
    b=[56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]
    
    
    #设置图形大小
    plt.figure(figsize=(20,8),dpi=80)
    #绘制条形图
    plt.barh(range(len(a)),b,height=0.3,color="orange")
    #设置字符串到x轴
    plt.yticks(range(len(a)),a,fontproperties=my_font)
    
    plt.grid(alpha=0.3)
    # plt.savefig("./movie.png")
    
    plt.show()
    View Code

    例子7

    # coding=utf-8
    from matplotlib import pyplot as plt
    from matplotlib import font_manager
    my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\STHUPO.ttf")
    
    
    a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
    b_16 = [15746,312,4497,319]
    b_15 = [12357,156,2045,168]
    b_14 = [2358,399,2358,362]
    
    bar_width = 0.2
    
    x_14 = list(range(len(a)))
    x_15 =  [i+bar_width for i in x_14]
    x_16 = [i+bar_width*2 for i in x_14]
    
    #设置图形大小
    plt.figure(figsize=(20,8),dpi=80)
    
    plt.bar(range(len(a)),b_14,width=bar_width,label="9月14日")
    plt.bar(x_15,b_15,width=bar_width,label="9月15日")
    plt.bar(x_16,b_16,width=bar_width,label="9月16日")
    
    #设置图例
    plt.legend(prop=my_font)
    
    #设置x轴的刻度
    plt.xticks(x_15,a,fontproperties=my_font)
    
    plt.show()
    View Code

    例子8

    # coding=utf-8
    from matplotlib import pyplot as plt
    from matplotlib import font_manager
    
    a=[131,  98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]
    
    #计算组数
    d = 3  #组距
    num_bins = (max(a)-min(a))//d
    print(max(a),min(a),max(a)-min(a))
    print(num_bins)
    
    
    #设置图形的大小
    plt.figure(figsize=(20,8),dpi=80)
    plt.hist(a,num_bins,normed=True)
    
    #设置x轴的刻度
    plt.xticks(range(min(a),max(a)+d,d))
    
    plt.grid()
    
    plt.show()
    View Code

    例子9

    # coding=utf-8
    from matplotlib import pyplot as plt
    from matplotlib import font_manager
    
    interval = [0,5,10,15,20,25,30,35,40,45,60,90]
    width = [5,5,5,5,5,5,5,5,5,15,30,60]
    quantity = [836,2737,3723,3926,3596,1438,3273,642,824,613,215,47]
    
    
    print(len(interval),len(width),len(quantity))
    
    #设置图形大小
    plt.figure(figsize=(20,8),dpi=80)
    
    
    
    plt.bar(range(12),quantity,width=1)
    
    #设置x轴的刻度
    _x = [i-0.5 for i in range(13)]
    _xtick_labels =  interval+[150]
    plt.xticks(_x,_xtick_labels)
    
    plt.grid(alpha=0.4)
    plt.show()
    View Code

     例子9-2

    # coding=utf-8
    from matplotlib import pyplot as plt
    from matplotlib import font_manager
    
    interval = [0,5,10,15,20,25,30,35,40,45,60,90]
    width = [5,5,5,5,5,5,5,5,5,15,30,60]
    quantity = [836,2737,3723,3926,3596,1438,3273,642,824,613,215,47]
    
    
    print(len(interval),len(width),len(quantity))
    
    #设置图形大小
    plt.figure(figsize=(20,8),dpi=80)
    
    
    
    plt.bar(interval,quantity,width=width)
    
    #设置x轴的刻度
    
    temp_d = [5]+ width[:-1]
    _x = [i-temp_d[interval.index(i)]*0.5 for i in interval]
    
    
    plt.xticks(_x,interval)
    
    plt.grid(alpha=0.4)
    plt.show()
    View Code

    二、常用问题总结

    应该选择那种图形来呈现数据
    matplotlib.plot(x,y)
    matplotlib.bar(x,y)
    matplotlib.scatter(x,y)
    matplotlib.hist(data,bins,normed)
    xticks和yticks的设置
    label和titile,grid的设置
    绘图的大小和保存图片

    做法流程:

        明确问题 选择图形的呈现方式 准备数据 绘图和图形完善

    三、推荐网址

        1、matplotlib支持的图形是非常多的,如果有其他的需求,我们 可以查看一下url地址: http://matplotlib.org/gallery/index.html

         2、plotly:可视化工具中的github,相比于matplotlib更加简单,图形更加漂亮,同时兼容matplotlib和pandas 使用用法:简单,照着文档写即可 文档地址: https://plot.ly/python/

        3、echarts,前端框架,JS

        4、seaborn

    四、numpy

    一个在Python中做科学计算的基础库,重在数值计算,也是大部分PYTHON科学计算库的基础库,多用于在大型、多维数组上执行数值运算

    # coding=utf-8
    import numpy as np
    import random
    
    #使用numpy生成数组,得到ndarray的类型
    t1 = np.array([1,2,3,])
    print(t1)
    print(type(t1))
    
    t2 = np.array(range(10))
    print(t2)
    print(type(t2))
    
    t3 = np.arange(4,10,2)
    print(t3)
    print(type(t3))
    
    print(t3.dtype)
    print("*"*100)
    #numpy中的数据类型
    
    t4 = np.array(range(1,4),dtype="i1")
    print(t4)
    print(t4.dtype)
    
    ##numpy中的bool类型
    t5 = np.array([1,1,0,1,0,0],dtype=bool)
    print(t5)
    print(t5.dtype)
    
    #调整数据类型
    t6 = t5.astype("int8")
    print(t6)
    print(t6.dtype)
    
    #numpy中的小数
    t7 = np.array([random.random() for i in range(10)])
    print(t7)
    print(t7.dtype)
    
    t8 = np.round(t7,2)
    print(t8)

     1、读取本地数据

    # coding=utf-8
    import numpy as np
    
    us_file_path = "./youtube_video_data/US_video_data_numbers.csv"
    uk_file_path = "./youtube_video_data/GB_video_data_numbers.csv"
    
    # t1 = np.loadtxt(us_file_path,delimiter=",",dtype="int",unpack=True)
    t2 = np.loadtxt(us_file_path,delimiter=",",dtype="int")
    
    # print(t1)
    print(t2)
    
    print("*"*100)
    
    #取行
    # print(t2[2])
    
    #取连续的多行
    # print(t2[2:])
    
    #取不连续的多行
    # print(t2[[2,8,10]])
    
    # print(t2[1,:])
    # print(t2[2:,:])
    # print(t2[[2,10,3],:])
    
    #取列
    # print(t2[:,0])
    
    #取连续的多列
    # print(t2[:,2:])
    
    #取不连续的多列
    # print(t2[:,[0,2]])
    
    #去行和列,取第3行,第四列的值
    # a = t2[2,3]
    # print(a)
    # print(type(a))
    
    #取多行和多列,取第3行到第五行,第2列到第4列的结果
    #去的是行和列交叉点的位置
    b = t2[2:5,1:4]
    # print(b)
    
    #取多个不相邻的点
    #选出来的结果是(00) (21) (23)
    c = t2[[0,2,2],[0,1,3]]
    print(c)

    2、exer

    # coding=utf-8
    import numpy as np
    
    
    # print(t1)
    def fill_ndarray(t1):
        for i in range(t1.shape[1]):  #遍历每一列
            temp_col = t1[:,i]  #当前的一列
            nan_num = np.count_nonzero(temp_col!=temp_col)
            if nan_num !=0: #不为0,说明当前这一列中有nan
                temp_not_nan_col = temp_col[temp_col==temp_col] #当前一列不为nan的array
    
                # 选中当前为nan的位置,把值赋值为不为nan的均值
                temp_col[np.isnan(temp_col)] = temp_not_nan_col.mean()
        return t1
    
    if __name__ == '__main__':
        t1 = np.arange(24).reshape((4, 6)).astype("float")
        t1[1, 2:] = np.nan
        print(t1)
        t1 = fill_ndarray(t1)
        print(t1)

    3、exer2

    import numpy as np
    from matplotlib import  pyplot as plt
    
    us_file_path = "./youtube_video_data/US_video_data_numbers.csv"
    uk_file_path = "./youtube_video_data/GB_video_data_numbers.csv"
    
    # t1 = np.loadtxt(us_file_path,delimiter=",",dtype="int",unpack=True)
    t_us = np.loadtxt(us_file_path,delimiter=",",dtype="int")
    
    #取评论的数据
    t_us_comments = t_us[:,-1]
    
    #选择比5000小的数据
    t_us_comments = t_us_comments[t_us_comments<=5000]
    
    print(t_us_comments.max(),t_us_comments.min())
    
    d = 50
    
    bin_nums = (t_us_comments.max()-t_us_comments.min())//d
    
    #绘图
    plt.figure(figsize=(20,8),dpi=80)
    
    plt.hist(t_us_comments,bin_nums)
    
    
    plt.show()

    exer2-2

    import numpy as np
    from matplotlib import  pyplot as plt
    
    us_file_path = "./youtube_video_data/US_video_data_numbers.csv"
    uk_file_path = "./youtube_video_data/GB_video_data_numbers.csv"
    
    # t1 = np.loadtxt(us_file_path,delimiter=",",dtype="int",unpack=True)
    t_uk = np.loadtxt(uk_file_path,delimiter=",",dtype="int")
    
    #选择喜欢书比50万小的数据
    t_uk = t_uk[t_uk[:,1]<=500000]
    
    t_uk_comment = t_uk[:,-1]
    t_uk_like = t_uk[:,1]
    
    
    plt.figure(figsize=(20,8),dpi=80)
    plt.scatter(t_uk_like,t_uk_comment)
    
    plt.show()

    五、pandas

    1、为什么要学习pandas

    那么问题来了:numpy已经能够帮助我们处理数据,能够结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢?
     
    numpy能够帮我们处理处理数值型数据,但是这还不够
    很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等
    比如:我们通过爬虫获取到了存储在数据库中的数据
    比如:之前youtube的例子中除了数值之外还有国家的信息,视频的分类(tag)信息,标题信息等
    
    所以,numpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我们处理其他类型的数据

    2、

  • 相关阅读:
    GO学习-(17) Go语言基础之反射
    Go语言基础之time包
    Go语言标准库log介绍
    GO学习-(16) Go语言基础之文件操作
    GO学习-(15) Go语言基础之包
    GO学习-(14) Go语言基础之接口
    五种开源API网关实现组件对比
    Spring Junit4 Test
    Java泛型
    SQL 基本(Head First)
  • 原文地址:https://www.cnblogs.com/di2wu/p/10204412.html
Copyright © 2011-2022 走看看