zoukankan      html  css  js  c++  java
  • [LeetCode] Word Ladder

    Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:

    1. Only one letter can be changed at a time
    2. Each intermediate word must exist in the dictionary

    For example,

    Given:
    start = "hit"
    end = "cog"
    dict = ["hot","dot","dog","lot","log"]

    As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
    return its length 5.

    Note:

      • Return 0 if there is no such transformation sequence.
      • All words have the same length.
      • All words contain only lowercase alphabetic characters.

    这道题目首先想到的是DFS,或曰backtracking,也就是每次都找到一个可能的路径,最后比较所有路径中最小的就是题目所求。这样做显然需要较多的时间,因为我们遍历了所有的可能性。那么,有没有更加快捷的方案呢?
    答案是显然的,那就是BFS。CareerCup上有这道题目,当时没有注意总结成这么抽象的方法,这次一定要好好总结一下。首先,虽然题目中没有一个“图”的概念,但是我们可以假想构建一个图,其中图中的每个顶点都是我们的元素,点和点是如何联系起来的呢?如果一个单词通过改变一次字母,能够变成另外一个单词,我们称之为1 edit distance 距离(是不是想起了leetcode中edit distance那道题目了?)所以,图中的所有相邻元素都是edit distance 距离为1的元素。那么,我们只需要做BFS,哪里最先遇到我们的target word,那么我们的距离就是多少。如果遍历完所有的元素都没有找到target word,那么我们就返回1。
    另外一个需要注意的地方就是,如果我们曾经遍历过某个元素,我会将其从字典中删除,以防以后再次遍历到这个元素。这里有几种情况:
    1.以后再也遍历不到这个元素,那么我们删除它当然没有任何问题。
    2.我们以后会遍历到该元素,又分为两种情况:
    (1)在本层我们就能遍历到该元素。也就是说,我们到达这个元素有两条路径,而且它们都是最短路径。
    举一个例子应该比较容易理解:比如hot->hog->dog->dig和hot->dot->dog->dig,那么在第一次遍历距离hot为1的元素时,我们找到了hog和dot。对hog遍历时,我们找到了dog,并且将其从字典中删除。那么在遍历距离dot为1的元素时,我们实际上是找不到dog的,因为已经被删除了。对于本题来说,是没有什么影响的,因为到dog距离都是3,到dig距离都是4,我们要的是最小,所以选择3,对于后续没什么影响。但是后面我们做word ladder 2的时候,如果没有考虑这个情况,将是非常致命的,因为题目要求输出最短路径的所有情况,我们稍后讨论相关问题
    (2)在更下层我们才能够遍历到该元素。比如hot->dot->dog->dig和hot->hat->dat->dag->dog->dig,如果第一次我们找到了dog并且将其删除,那么第二次我们实际上是找不到这个元素的。这样对于本题来说,没有任何影响。对于word ladder 2来说,因为也是要输出最短路径,所以也不会有任何影响。但是倘若我们要输出从起点到终点的所有路径,那么我们就要小心这种情况了。


    所以,从这里我们也能够得到这样一个结论:对于题目来说,一定要深刻理解每一步为什么要这样做。因为每种方式或多或少都会根据题目的特性做一些优化(比如word ladder I 和word ladder II),不仅仅要知道为什么要做优化,而且要知道优化的代价是什么,在什么情况下适用,什么情况下不适用。
    另外一点就是,每做一道题目都要好好总结一下,看看通过这道题目能够学会什么。好的题目,应该是会学会一个更加一般性的方法。现在没有时间去看CLRS,但是好好总结每一道题目,学会的方法也不会少。

    思路上,请参考

    http://blog.csdn.net/yutianzuijin/article/details/12887747  

    注意,初始值为2,即包括start和end 两个元素

     1 class Solution {
     2     public:
     3     int ladderLength(string start, string end, unordered_set<string> &dict)
     4     {
     5         if(start.empty() || end.empty() )
     6             return 0;
     7         if(start.size() != end.size())
     8             return 0;
     9         if(start.compare(end) == 0)
    10             return 1;
    11 
    12         size_t size =  start.size();
    13 
    14         queue<string> cur, next;
    15         cur.push(start);
    16 
    17         int length = 2;
    18 
    19         while(!cur.empty())
    20         {   
    21             string org = cur.front();
    22             cur.pop();
    23 
    24             for(int i = 0; i< size; i++)
    25             {   
    26                 string tmp = org;
    27                 for(char j = 'a'; j <= 'z'; j++ )
    28                 {   
    29                     if(tmp[i] == j)
    30                         continue;
    31                         //cout << "tmp = " << tmp << endl;
    32                     if(tmp.compare(end) == 0)
    33                         return length ;
    34                     tmp[i] = j;
    35                     if(dict.find(tmp) != dict.end())
    36                     {
    37                         //cout << "push queue " << tmp << endl;
    38                         next.push(tmp);
    39                         dict.erase(dict.find(tmp));
    40                     }
    41                 }
    42             }
    43             if(cur.empty() && !next.empty())
    44             {
    45                 swap(cur, next);
    46                 length ++ ;
    47             }
    48         }
    49         return 0;
    50     }
    51 };





    几个程序中需要注意的细节:
    1. ditance变量应该初始化为1。这个其实没有定数,不过根据题目的要求,比如hot->hog->dog,距离是3,由于我们每次distance只有在变化的时候才能增加(也就是说,我们这个变量实际上反映的是,我们“变化”了多少层),所以应该初始化为1
    2.如何初始化一个string。由于queue.front()返回的是元素的引用,因此我们必须拷贝那个变量,所以使用string str(queToPop.front());来初始化,然后将元素pop。
    3.C++中,实际上提供了swap函数的模板,不得不说还是很方便的。

  • 相关阅读:
    个人作业-数组3
    Java编程思想
    19年春第三周学习
    个人作业-数组2
    自我介绍
    个人作业-数组
    19春第二周学习心得
    fiddler--华为手机下载安装fiddler证书
    RF接口测试----post请求
    RF接口测试----get请求
  • 原文地址:https://www.cnblogs.com/diegodu/p/3817809.html
Copyright © 2011-2022 走看看